Search
Search Results
-
Plant production possibilities on a heavy metal contaminated soil with the purpose of biorefinery
215-222Views:133Significant part of not cultivated area of Hungary is not suitable for agricultural utilization because of industrial
pollution. Technologies of biorefinery make reutilization of contaminated areas possible. Biomass of plants
produced on polluted soils can be raw material of valuable products. Applicability of biorefinery was tested on a
heavy metal polluted soil, where the contamination originated from previous mining activity. Complete biomass
utilization was aimed to obtain cosmetic ingredients, pharmaceutical agents, and precursors. During our research
work 88 plant species and varieties were produced and tested for potential utilizable components. Levels of
possible contaminants in these plants were monitored, and amounts of carbohydrates, protein, organic acid and
cellulose were determined as well. Different plant extracts were tested as potential sources of biologically effective
components or as raw materials for lactic acid fermentation. Our results show that biorefinery is a real possibility
for utilization of polluted areas. Numerous plants could be cultivated on contaminated areas without increased
levels of contaminants in their tissues, thus they can be sources of valuable compounds. -
Deproteinized plant juice as part of circular economy: A short review and brief experimental data
23-26Views:1545As the population of the Earth is constantly growing it generates an unmet demand for protein, which is an urgent problem. The protein extraction process is a potential solution, which offers high-quality plant protein suitable for animal and human nutrition at a favorable price. The process used within our project produces green juice from the green alfalfa biomass through pressing. After the coagulation of protein from this green juice, the by-product is called DPJ (Deproteinized Plant Juices) or brown juice. Our preliminary results match the international literature, namely that brown juice take up as much as 50% of the fresh biomass in weight. To utilize this by-product is a crucial part of the process to make it environmental-friendly and financially viable as well. The examined brown juice samples came from a small-scale experiment of alfalfa varieties carried out in the experimental farm at the University of Debrecen. According to our preliminary results, brown juice has high macro- and micronutrient values, furthermore, it has a potentially high amount of antioxidant compounds. The study highlights that brown juice is suitable as an ingredient in microbiological media, in plant nutrition as a supplementary solution, for feedstock and for preparing human food supplements or functional foods. The potential utilization of all biorefinery products makes it a very appropriate technology for today’s challenges.