Search

Published After
Published Before

Search Results

  • Amelioration and arable land-use possibilities of Solonetz soils in the Trans-Tisza region of Hungary
    107-117
    Views:
    165

    Salt affected soils cover about 1 million hectares in Hungary. This paper is based on the research results obtained at the Karcag-puszta long-term experimental site, where, depending on the catena, crusty (A horizon=0–7 cm), medium (A hor.=8– 20 cm) and deep (A hor.>20 cm) subtypes of the Meadow Solonetz soil could be found. The chemical reclamation was made specifically for the given site. Lime was applied on the soils with neutral or slightly acidic top layer, while on the soils with alkaline top layer, gypsum was applied. As regards internal drainage, a tube system with an average depth of 1 m and 5, 10 and 15 m drain spacing was constructed. Decreasing salt and sodium content could be measured both in drained and non-drained soils. The advantage of drainage was that the leachingout extended to the whole layer above the drain pipes, while without drainage, the Na ions exchanged from the upper layers still accumulated at a depth of 60– 100 cm. In the first two decades, the groundwater level was deeper and leaching was the dominant process. Since 2004, due to the frequently high groundwater level, the leaching and deepening of the fertile top layer has been slower.

  • Effect of crop residues on soil aggregate stability
    23-32
    Views:
    92

    Soil structure may be improved by adding readily decomposable organic matter. The extent of amelioration depends on the chemical build-up and decomposability of the crop residues. Three different kinds of organic matters were investigated: (1) maize stem, (2) wheat straw, and (3) maize stem
    & wheat straw. Comparing the aggregate stabilizing effects of the differently decomposable organic matters to each other, the expected maize stem & wheat straw (mw) > maize stem (m) > wheat straw (w) order was proved.

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    99

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • The application of bentonite and zeolite for soil amelioration in acidic sandy soil
    131-137
    Views:
    103

    In a pot experiment, we have studied the effect of bentonite and zeolite in different dosages [control; 5; 10; 15; 20 g kg-1] on acidic (pHH2O=5.65) humus sandy soil. The experiment was set up in 2007 and 2008 in the greenhouse of the UD CASE Department of Agrochemistry and Soil Science. As a test plant, perennial ryegrass (Lolium perenne L.) was used. 
    In laboratory examinations, pH(H2O), pH(KCl), hidrolytic acidity, nitrate-N content, readily available phosphorus and potassium content were determined. Among soil microbial parameters, the total number of bacteria, the cellulose-decomposing bacteria, the carbon-dioxide production, the microbial biomass-C content of soil, and the saccharase enzyme activity were measured. In the experiment the biomass of the test plant was determined.
    The effect of bentonite and zeolite in different dosages can be summarized as follows:
    − The pH increased under the effect of low dosages. With the increasing of the pH the hydrolytic acidity - at the bentonite treatments significantly – decreased. 
    − Regarding the readily available nutrient content of the soil, low and medium dosages proved to be effective. High dosages of bentonite treatments reduced the nitrate-N content, the readily available phosphorus, and potassium content of soil, by zeolite treatments the high dosages reduced the nitrate-N content of soil. 
    − Regarding the measured soil microbial parameters in both treatments low and medium dosages proved to be also effective, but the high dosages didn’t cause decreasing at the total number of bacteria, and by zeolite treatments the biomass-C content of soil.
    − Also the bentonite and zeolite treatments enlarged the biomass of the test plant. We experienced significant increasing by bentonite treatments by the effect of medium and high dosages, while in zeolite treatments only the high dosage caused significantly increasing in plant biomass. The largest dosages decrease the plant biomass. 
    − Under the statistical analysis we found many medium and tight correlation between the studied parameters.