Search

Published After
Published Before

Search Results

  • The impact of different fertilization methods on some microbiological soil characteristics
    119-126
    Views:
    93

    In our experiment, we studied the impact of an organic fertilizer, Bactofil® A10 (half- and full dosage applied in field practice) and an artificial fertilizer of Ca(NO3)2 content in different dosages (20-40 mg kg-1) – in addition to control treatments – on two different soils (calcareous chernozem, humus sandy soil) in 2005-2006, the experiment was complemented with treatments applying 250% dosage (100 mg kg-1 N, Bactofil® A10 2.5 times the field dosage) and a compost from urban sewage (25 g kg-1 compost) was also tested on these two soil types. In the
    experiment, several soil microbial parameters were studied. The experiment was set up at the Department of Agrochemistry and Soil Science using 1-kg pots.
    Our laboratory experiments were performed at the soil microbiology laboratory of UD CAS Department of Agrochemistry and Soil Science, the total number of bacteria, microscopic fungi, nitrifying and aerob cellulose-decomposing bacteria were determined together with the CO2-production of soil, N content of the biomass and urease enzyme activity.
    Statistical analysis of the data was done using the program SPSS 13.0, means of the measurements, deviation and significance values were calculated. 
    In 2005-2006, the effect of the different dosages of Bactofil® A10, and the Ca(NO3)2 fertilizer on the examined microbial parameters of calcareous chernozem and humus sandy soils can be summarized as follows:
    • Concerning the total number of bacteria, both treatments were effective on calcareous chernozem soil, the higher (significant) increment in bacteria number was observed in the artificial fertilizer treatments, while in the humus sandy soil Bactofil treatments had a beneficial effect. The number of microscopic fungi also increased in both treatments, higher numbers were observed in the average of two years in the Bactofil treatments.
    • The number of nitrifying bacteria was 2.5 times higher in both high-dosage treatments on calcareous chernozem soil, while on humus sandy soil a slight (not significant) increment was observed only int he high-dosage Bactofil treatment. The amount of aerob cellulose-decomposing bacteria significantly increased on calcareous chernozem soil in both the highdosage artificial fertilizer and the small-dosage Bactofil treatment, however, on humus sandy soil no significant increase was observed in either treatment.
    • The CO2-production increased in both soil types, although it was not significant in either treatment. A higher (though not significant) soil respiration was observed in the Bactofil treatments in both soil types.
    • The microbial biomass N values were significantly higher in the high-dosage Bactofil treatments, however, the high-dosage artificial fertilizer treatment also increased these values significantly on calcareous chernozem soil.
    • On calcareous chernozem soil, urease activity was significantly increased and reduced by high-dosage artificial fertilizer treatments and Bactofil treatments, respectively. On humus sandy soil, urease activity was also reduced except for the high-dosage artificial fertilizer treatment. In 2007, the pot experiment with 250% dosages was complemented with the application of compost rich in organic matter, the results of these treatments are sumnmarized as follows:
    • In the case of the total number of bacteria, all three treatments resulted in a significant increase on calcareous chernozem soil with the highest values in the Bactofil treatment. The Bactofil treatment was the most effective on the humus sandy soil, but the artificial fertilizer treatment also
    resulted in a significant increment. In the case of the total number of fungi, Bactofil treatments resulted in the highest values on both soils, but the compost treatment also increased the number of fungi in calcareous chernozem significantly. 
    • The number of nitrifying bacteria was increased most (significantly) by the Bactofil and compost treatments on both soil types. The amount of cellulose-decomposing bacteria was significantly increased by he compost treatment on calcareous chernozem soil, while its effect was not significant on humus sandy soil. The number of these bacteria was increased significantly by the Bactofil treatment on humus sandy soil.
    • On calcareous chernozem soil, all three treatments significantly increased CO2-production, while the compost treatments had the resulted in the largest increment in soil respiration on both soil types.
    • The soil biomass N content was significantly increased in both soils by the compost treatment, while in the case of the humus sandy soil, the Bactofil treatment also resulted in a significant increment.
    • Urease enzyme activity was significantly increased by the artificial fertilizer treatment on both soils. In calcareous chernozem soil, the Bactofil treatment resulted in a slight (not significant) reduction in enzyme activity. In humus sandy soil, the Bactoful treatment also resulted in a slight reduction, while the compost treatment increased (though not significantly) the urease activity.
    Based on our results, it can be stated that all three treatments were effective with respect to the studied soil microbial parameters. For both the calcareous chernozem and the humus sandy soil, the organic fertilizer Bactofil and the compost with high organic matter content had a stronger effect on some soil microbial parameters than the artificial fertilizer.

  • Comparative examination of a mineral fertiliser and a bacterial fertilizer on humic sandy soil
    111-116
    Views:
    79

    In our pot experiment, the impact of a bacterial fertilizer, Bactofil® A10 and a mineral fertilizer Ca(NO3)2 applied in different rates was studied on some soil chemical and microbiological characteristics of a humic sandy soil (Pallag). Perennial rye-grass (Lolium perenne L.) was used as a test-plant. Samples were collected four and eight weeks after sowing in each year. The experiment was set up in 2007-2009 in the greenhouse of
    the UD CASE Department of Agrochemistry and Soil Science. The available (AL-extractable) nutrient contents of soil, among the microbial parameters the total number of bacteria, the number of microscopic fungi, cellulose-decomposing and nitrifying bacteria, the sacharase and urease enzyme activity, as well as the soil respiration rate were measured.
    Statistical analyses were made by means of the measurements deviation, LSD values at the P=0.05 level and correlation coefficients were calculated. Results of our experiment were summarised as follows:
    − The readily available nutrient content of humic sandy soil increased as affected by the treatments, in case of the available (AL-extractable) phosphorus and potassium content the higher value was measured in high-dosage artificial fertilizer treatment.
    − The treatments had also positive effect on several soil microbial parameters studied. The higher-dosage mineral fertilizer treatments had a beneficial effect on the total number of bacteria, cellulose-decomposing and nitrifying bacteria. No significant differences were obtained between the effect of treatment in case of the total-number of bacteria, the number of microscopic fungi and nitrifying bacteria.
    − On the sacharase enzyme activity the artificial fertiliser treatments proved to be unambiguously stimulating, the urease activity significantly increased on the effect of the lower-dosage Ca(NO3)2 artificial fertilizer treatment. 
    − The soil respiration increased in all treatments in related to the amounts applied, significantly increased in the highest rate of Ca(NO3)2 fertilizer addition. 
    − Some medium and tight positive correlations were observed between the soil chemical and microbiological parameters studied in case of both nutrient sources. 
    Summarizing our results, it was established that the organic and all the mineral fertilizer treatments had beneficial effects on the major soil characteristics from the aspect of nutrient supply. In majority of the examined soil parameters (AL-extractable phosphorus- and potassium, total number of bacteria, number of cellulose-decomposing and nitrifying bacteria, activity of sacharase enzyme) the high rate of Ca(NO3)2 mineral fertilizer treatment proved to be more stimulating, but at the same time the high rate bacterium fertilizer resulted in significant increases in
    the nitrate-N content, the AL-potassium content of soil, the total number of bacteria, the number of cellulose-decomposing and nitrifying bacteria and the urease enyme activity. 
    Our examinations showed that the mineral fertilizer treatments proved to be more stimulating on most of the soil parameters studied but according to our results, it was established that Bactofil is efficiently applicable in the maintenance of soil fertility and the combined application of
    mineral fertilizer and bacterium fertilizer may be a favourable opportunity – also in aspect of the environmental protection – in maintaining soil fertility.

     

  • Comparative examination of a bacterium preparation (BACTOFIL® A10) and an artificial fertilizer [CA(NO3)2] on calcareous chernozem soil
    75-80
    Views:
    109

    In a small-pot experiment a bacterium preparation, Bactofil® A10 and an artificial fertilizer containing Ca(NO3)2 in different dosages were studied on calcareous chernozem soil, concerning the readily available nutrient content of soil (nitrate-nitrogen, AL-phosphorus, ALpotassium content of soil, some soil microbial characteristics (total number of bacteria and fungi, cellulose-decomposing and nitrifying bacteria, CO2-production of soil), and the amount of the plant biomass.
    The readily available nutrient content of the calcareous chernozem soil increased due to the treatments, except for the change in the soil nitrate-nitrogen content, which did not measure up to the control due to the effect of high-dosage Bactofil.
    The treatments also influenced the examined microbial characteristics of the soil positively. The artificial treatments significantly increased the total number of bacteria and the number of cellulose-decomposing and nitrifying bacteria. The low-dosage Bactofil significantly increased the number of cellulose-decomposing bacteria and both Bactofil dosage significantly increased the number of nitrifying bacteria. The measure of the soil respiration grew in all treatments, but significantly only in Ca(NO3)2 fertiliser treatments.
    The quantity of the plant biomass was grew in a low-dosage Bactofil and significantly in the artificial fertiliser treatments. The highest plant biomass quantity was measured in the high-dosage artificial fertiliser treatment.
    In the correlation analyses we found some medium positive correlation between the soil chemical, microbiological parameters examined, and the plant biomass in the case of both treatment-forms. 
    Based on our results Ca(NO3)2 artificial fertiliser treatments on calcareous chernozem soil proved to be more stimulating regarding the
    examined soil characteristics and the amount of the plant biomass, but the low-dosage Bactofil also positively influenced the majority of the
    soil characteristics examined in terms of nutrient supply.