Search

Published After
Published Before

Search Results

  • Establishing regional cultivating districts on the basis of the Kreybig practical soil mapping system
    20-25
    Views:
    124

    With the help of this report evaluating the current situation of the region, characteristics of the development in agricultural production and regional differences can be clarified. By mapping out the regional soil, land use and climatic conditions and organizing these into a geographical information system, one can easily determine which plants are the most ideal to cultivate in that particular region. Moreover, it is a useful tool that enables us to
    establish the most favorable land use structure suited to ecological demands and also helps to determine the methods of soil protection.
    During our work, we chose administrative units in Szabolcs-Szatmár-Bereg County, based on the latest aspects of regional cultivation.
    Our pilot areas are: the small regions of Nyíregyháza, Nyírbátor, Nagykálló, Mátészalka and Csenger.
    Using the database, we separated and uncovered the soil conditions of the pilot areas: the chemical and physical properties of the soil layer which is exploited by the roots of the plants, the humus content, the nutrient supply, the thickness of the cultivated layer and the water management conditions.
    We separated the districts of regional cultivation, where the basic elements of the traditional Kreybig color systems were applied (light yellow, dark yellow, light brown, dark green, blue, pink, red, gray, greenish brown, reddish purple, light purple, dark purple, light green).
    By using the data collected from the pilot areas, we compiled a map database, which is suitable to illustrate the plant cultivating characteristics of the region. We made recommendations to determine the most favorable plants to cultivate in the specific region with the given meteorological and soil conditions, as well as for the shifting of crops.
    Our recommendations were also illustrated in a map with a resolution of 1:25000. 

  • European Funds and the Evaluation of Their Application in the Northern Great Plain Region
    191-198
    Views:
    87

    Presently, the process of regionalization is slowly progressing in Hungary. The regional institutional system is young and the institutional experiences are limited. The Hungarian regional development agencies are operated with a limited number of personnel and their budget is only a fraction of EU regional agencies of similar size. There is no unequivocal cooperation between regional development agencies and county development agencies. In the absence of these, the strategical objectives of the region cannot be aligned and the application of consistent development policies cannot be achieved. In the past five-six years the supports from EU Pre-Accession Funds, along with the new tools of regional development policies, have all contributed to the development of the North Great Plain Region. Phare projects – beside supporting development – have played a significant role in forming the approach of individuals who are actively involved in regional development, in promoting cooperation among cross-border and other regions, as well as in preparing the regions to accept EU structural funds. Prior to the May 1st, 2004 EU accession of Hungary, the North Great Plain Region received 24-25% in direct regional development funds in the Nineties. The support per capita in the case of TFC, TEKI and CÉDE has exceeded the national average. The North Great Plain Region has received support from investment type agricultural supports, the Employment Fund and the Touristical Directives that well exceeded the national average, from the sectoral resource funds. However, the applicants of the North Great Plain Region have received little support in the case of environmental, water management and especially road development supports. About 200 applications have been submitted for the SAPARD calls nationally, 32 of these were from the North Great Plain Region. The significance of cooperation among sub-regions is demonstrated by the fact that, except for 15 settlements in Szabolcs-Szatmár-Bereg county, all have submitted an application. The efforts of inhabitants is highlighted by the high number of submitted applications, as well as by the significant degree of own contribution. Still, the GDP of the North Great Plain Region has not increased, the rate and tendency of unemployment does not sufficiently reflect the positive effect of supports. The Regional Development Directive has provided support for the development of many small- and medium size enterprises, but their effect did not ensure a sustained economic growth.
    The greatest difficulty is that the number of dedicated professionals who are skilled in regional politics and regional development is few. However, advantages of our EU accession can only be exploited if a group of highly skilled professionals is provided on local, county, regional and national level as well. Thus, we need a group of professionals who are informed about the European Union, the EU support forms and most of all about the operation of Structural Funds and Cohesion Funds to establish the suitable institutional background for professionally handling the funds obtained from the EU, to prepare the professional documents to access the funds and to generate development projects to efficiently use the funds as well as establishing connections with the institutions of the EU. Appropriate share from funds coming from the EU is only possible if the country, certain regions, counties and sub-regions can achieve rapid results in the areas listed above.

  • Greenhouse gas emissions and Europe 2020 strategy
    241-244
    Views:
    98

    Common Agricultural Policy has identified three priority areas for action to protect and enhance rural heritage: (i) the preservation and development of natural farming and traditional agricultural landscapes; (ii) water management and sustainable use and (iii) dealing with climate change. Measures of Rural Development Plan in EU countries promote the development of agricultural practices for preserving the environment and safeguarding the countryside. This is achieved by targeting rural development and promoting environmental friendly, sustainable practices, like agri-environment schemes. Farmers are encouraged to continue playing a positive role in the maintenance of the countryside and the environment. Changes in total emission between 1990
    and 2007 do not show any correlation with the total GHG emission. GHG emission was reduced in Hungary, Slovakia, Lithuania, Czech Republic, Romania, Poland, Estonia and Bulgaria, where GHG efficiency is low.

  • The use of biogas in energetics
    41-46
    Views:
    121

    In our study we examine the technical facilities of biogas production in the economic environment of a given region. The region can be considered as typical: it has animal farms, a poultry-processing plant with the characteristic problems of environment load and by-product handling. Biogas can be used for energetic purposes, and, in large scale, it can be sold as electric energy. The heat coming from the engine and the generator can be collected in heat exchangers and can be used for preparing hot water and for heating. One third of the gained energy is electric, two thirds are heat. The aim of the local owner and the economic management is to increase the rate of cost-effectiveness in general. We examined the tecnnical and economic conditions of establishing a biogas plant (using data of an existing pigfarm). We planned the biogas plant and calculated the expected investment and operational costs and return.

  • Topology in the fruit plantation
    253-257
    Views:
    245

    The localization of fruit trees, the topology of the branch structure and the spatial structure of the canopy are important to plan sitespecific agro-ecological and production technology projects in an orchard. The currently used instruments and technologies – in the precision agriculture – give opportunities to obtain these informations. The examinations were carried out in the Study and Regional Research Farm of the University of Debrecen near Pallag with the use of a GreenSeeker 505 Hand Held™ Optical Sensor Unit, and its interface the Trimble AgGPS FmX Integrated Display board computer. The collected spectral data were completed with the 3D point cloud by Leica ScanStation C10 laser scanner. The laser impulse data and the vegetation index values were integrated in a unified 3D system. The integration of the two special data collection system provides new opportunities in the development of precision production technology system. The results could be directly used in phytotechnology, water management, plant protection and harvesting in orchards. Our elaborated method can supply digital high spatial accuracy guidance data for development of the automated machines, which could provide some new developmental way in the immediate future.

  • Evaluation of automated anaerobic fermentation processes as in the case of mould infected maize
    81-86
    Views:
    203

    In Hungary the renewable energy utilization is planned to achieve 13% by 2020. Biogas production is one of the fields with the largest energy potential. Achieving high efficiency during continuous production despite the mixed and variable composition of input materials is the most common problem which the newly built biogas plants using agricultural raw materials have to deal with. The first experimental reactors at the Department of Water and Environmental Management were built 12 years ago. Control and automation of the four separated bioreactors were executed with ADVANTECH GENIE 3.0 software which granted pre-programmed measurement and points of intervention for pH, temperature, CH4, CO2, H2S, and NH3. The system became out-of-data, therefore in 2010 it has been redesigned and tested. The system is controlled by Compair Proview SCADA (Supervisory Control and Data Acquisition) software running on Linux platforms. The Fusarium infection caused serious yield-losses in cereal production in 2010. In the case of cereal products, which non-utilizable as forage seems an optimal solution is utilizing as biogas raw material. The raw material was based on the Fusarium infected maize. In the recent publication infotechnological and technological experiences of the pilot test period are evaluated as well as direction of future development is defined.

  • Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids
    35-41
    Views:
    418

    The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017.

    The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed.

    The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period.

    The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model.

    Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.

  • Comparative study of different soybean genotypes in irrigation technology
    91-95
    Views:
    321

    In many places in Hungary, early maturity soybean can be successfully grown. The earlier maturity group of soy which ripened in 110–125 days in most crop areas in Hungary. However, to achieve excellent results, the selection of proper varieties is important too. Successful cultivation is largely dependent on the macro and microclimate of the production area, the nutrient supply of the soil and the cultivation technology. Soybean can be produced in places where the amount of precipitation is right, as the lack of water results in lower yields and deteriorated oil and protein concentrations. In the following study, 2 years (2016 and 2017) are compared to the yield, protein and oil content of the soybeans of the early maturation group in irrigated and non-irrigated treatments. Based on our experiment, it can be stated that, during the irrigation of soybean, oil and protein content and yields did not always change.

  • Using research findings in precision maize production
    227-231
    Views:
    234

    The effect of crop production factors on maize yield are examined on chernozem soil in a more than 30 year old long-term experiment on the Látókép Experiment Site of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. The aim of research is to evaluate the effect of fertilisation, cultivation, plant number, genorype and irrigation. The analysis of the data in the database of the examined period makes it possible to evaluate the effect of maize yield, as well as that of the crop production factors and the crop year, while the correlations and interactions between these factors were also examined. During the examination of the cultivation treatments, it was concluded that the highest yield was obtained as a result of autumn ploughing, but its effect largely differs in the irrigated and the nonirrigated treatments. Based on our examinations, strip cultivation should be applied periodically (e.g. strip – strip – ploughing – loosening) in areas with favourable soil conditions free from compacted layers. 
    In years with smaller, average precipitation supply or when the precipitation was higher than average, higher plant numbers were more favourable. Under drier conditions, but especially in several consecutively dry years, a lower plant number can be recommended which is not higher than 60 thousand per hectare. In the case of favourable water supply, 70-80 thousand plants per hectare can be  used. The yield increasing effect of fertilisation was significant in the case of both non-irrigated and irrigated conditions, but it was much more moderate in the non-irrigated treatment. The extent of weed coverage was significantly affected by the previous crop. In the case of a favourable previous crop (wheat), the weed coverage was significantly lower than after an unfavourable previous crop (maize). In the case of the same previous crop (maize), the extent of weed coverage was mostly determined by the crop year and the extent of precipitation supply. Irrigation is not enough in itself, because if it was not accompanied by intensive nutrient management, yields started to decline.
    The results of researhc, development and innovation contributed to the technological method which makes it possible to apply locally adjusted sowing seed, fertiliser and pesticide in a differentiated way, as well as to change the method of operations within the given plot.

  • A simple method for preparing elemental selenium nano- coating inside a silicone surface
    35-43
    Views:
    283

    Selenium nanoparticles (SeNPs) with a bright red colour have aroused worldwide attention due to their unique properties in selenium supplementation because of their low toxicity and favourable bioavailability. A simple method was developed for making a red selenium nanolayer on the inner surface of Polyvinyl chloride (PVC) and silicone tube. The selenium nanoparticles were produced by the reaction of sodium selenite and ascorbic acid. Red amorphous selenium nanoparticles have been successfully synthesized by the reaction of 500 mg dm-3 Se (sodium selenite) solution with 10 g dm-3 ascorbic acid solution at room temperature, and morphology was confirmed by X-ray diffraction analysis (XRD). The coating density was compared on PVC and silicone surfaces by using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDS) analysis. The nanolayer with about 16 µm thickness on the silicone surface significantly evenly distributed compared to the PVC surface. The selenium coated silicone tube could be a good source of selenium for a continuous, low-level selenium supplementation of farm animals via drinking water.

  • The Effect of Forecrop and Plant Protection on the Pathology Parameters and Yields of Winter Wheat
    84-89
    Views:
    119

    We carried out our experiment in the cropyears of 2000/2001, 2001/2002 and 2002/2003, on calcareous chernozem soil, at the experimental site of the Debrecen University Farm and Regional Research Institute, at Látókép. We examined the disease resistance and the yield quantity of Mv Magvas variety by adopting different forecrops and plant protection technologies, at 30+30 N level and at normal cereal row spacing. We applied two forecrops (wheat and pea) and two plant protection technologies (extensive and intensive). We measured the rate of infection by population survey in the first ten days of June.
    In the course of our examinations, we found, that the rate of powdery mildew infection was higher in the thicker population sown after pea forecrop in all three years, as powdery mildew is not a typical cereal disease.
    The infection rate of leaf mildew and DTR (Dreschlera tritici-repentis) was higher after wheat forecrop in all examined years, because these are typical wheat diseases and infection centres in the soil promote the spreading of these diseases. However, it was possible to parry the adverse effect of forecrops by intensive plant protection.
    Due to the chernozem soil, wich has good water management features, and due to the good preparation of the seedbed, the effect of forecrops on yield quantity did not appear in the examined years. The quantity of the yield was only slightly larger after pea forecrop in the cropyears of 2000/2001 and 2002/2003 than after wheat. Nonetheless, the data of technical literatures state that the yield quantity can be larger, even by 15-20%, after pea forecrop.
    In the course of intensive plant protection technology, we applied systemic pesticides, while in the course of environmentally sound technology, we used contact pesticides of sulphur content. In those populations that were treated with environmentally sound plant protection technology, infection rate was higher in all three years.
    Yield quantities were somewhat lower in the course of applying extensive, environmentally sound technology, because diseases appeared in these populations to the higher degree. Powdery mildew does not, but leaf mildew and Dreschlera tritici-repentis have a significant yield decreasing effect. With appropriate, well-selected fungicides, we were able to keep every leaf diseases well in hand, and the rate of infection was almost independent of the influence of the breeding year.

  • Evaluation of long term experiments from a new aspect
    55-60
    Views:
    141

    During our work, we developed a new, simple method to show the effects of fertilization on yield, which can both be applied over the long term as well as in series of independent experiments.
    During the testing of this method, at the experimental farm of the Debrecen University Center for Agricultural Sciences at Látókép on a chernozem soil with lime deposits, we examined the fertilizer reaction of maize hybrids between 1989 and 1994. The treatments were: winter tillage, plant density of 70-80 thousand, unfertilized, N 120, N 240 kg/ha fertilized treatments, long term experiments using Dekalb 524 and Volga SC hybrids in long term experiments.
    Four parameters are shown in the model. In the examined period TRmax represents the greatest yield in the fertilized treatments, NT the yield in unfertilized treatment, k the „efficiency of fertilizer” to NT and b the depression-coefficient, where the expected value is zero. The expected grain yield of the fertilized treatments (Y), in the function of the unfertilized grain yield (x) is the following:

    The parameters were determined using the Monte Carlo method, in the optimizing process the sum of deviation square was minimized. The correct conformation of the functions was determined by the greatness of the R-value and the standard error. We found that during six years of testing, the tendency of fertilization efficiency was similar in the case of both hybrids. There was an unfavorable weather interval and, in these years, the yields were low, fertilization did not have an effect and moreover, in extremely bad conditions resulted in an obvious yield decrease. With the  improvement of conditions, which in the case of our country means an increase in precipitation, the efficiency of fertilization increases and reaches its peak at 13-14 t/ha. At this point, the yield increasing effect of fertilization is 4-4,5 t/ha. If the yield of the unfertilized treatments increases from 8-9 t/ha, then the efficiency of the applied fertilizer decreases.
    Most likely, the k and b parameters depend on the soil of the experimental location (nutrient and water management) and on the amount of  pplied fertilizer and the characteristics of the  hybrid. With the increase of fertilizer dosage the k-parameter also increases. The greater value though does not obviously mean a more favorable situation. It is true that in medium and good years this means great fertilizer efficiency, but in low or extreme precipitation conditions it also means greater risk. With the increase of the k-parameter, the yield deviation also increases which, from a cultivation point of view, is quite unfavorable. If the value of the b-parameter is other than, zero then the effect is clearly unfavorable, because with the increase of this value, the yield decrease is also greater. The fertilizer reaction of the two examined hybrids can be well characterized by these two hybrids.
    Examining the six years, our created model estimated the effect of fertilization on the yield accurately and with a high degree of safety. Both in highly unfavorable and extremely good years, it gave an exact estimate. In our opinion, it can be used well to evaluate the effects of fertilization on yield in the future.

  • Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
    203-207
    Views:
    149

    The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous monitoring and by this way it promotes the food quality assurance and dietetics.
    With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
    The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
    The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
    compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. 

  • Examination of the Effect of Cropyear on the Yield Potential and Yield Stability of Winter Wheat Varieties
    62-67
    Views:
    156

    Variety selection is one of the most important, determinative elements of sustainable winter wheat production. Yield potential, and yield stability are the most important elements in the variety selection of winter wheat, but baking quality parameters play an important role, too.
    Several winter wheat varieties were tested for yield and yield stability on chernozem soil in the Hajdúság (in the eastern part of Hungary), in the 2001-2002-2003-2004 cropyears. The management factors were the same for all cropyears. 15 varieties in early the maturity group, 14 varieties in the middle maturity group and 4 varieties in the late maturity group were tested in the above mentioned cropyears. The climatic conditions were average in 2001, dry in 2002, extremely dry in 2003, and very favourable in 2004.
    We obtained 5298-6183 kgha-1 yield from early maturity varieties, 5683-6495 kgha-1 from middle, 5694-6031 kgha-1 from late ones in the average of four years. The cropyears had strong influence on the yields, even on chernozem soil, and were characterized by excellent water – and nutrient – husbandry. Averaging of cropyears and genotypes, we obtained 6984 kgha-1 in 2001 (average cropyear), 5452 kgha-1 in 2002 (dry cropyear), 3120 kgha-1 in 2003 (extremely dry cropyear) and 8400 kgha-1 in 2004 (optimum cropyear), respectively. The yield differences between the minimum and maximum yields were 885 kgha-1 in early varieties, 812 kgha-1 in middle and 337 kgha-1 in late maturity varieties, respectively. The varieties characterized by high yield potential and the varieties characterized by good yield stability were different, so in variety selection we have to take both genetic traits into consideration. There were positive, significant correlations among the yields of winter wheat varieties (early, middle, late), the temperature of spring months. (March-April), and the rainfall of spring months (March-April) (R2=0,703**-0,768** and R2=0,681**-0,749**, respectively). We found a high negative correlation between the temperature of early summer months (May-June) and the yields of wheat varieties (R2= -0,856**- -0,918**).
    According to the results of our experiment, it is very important to harmonize yield potential and yield stability in the variety selection of winter wheat.