Search

Published After
Published Before

Search Results

  • The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
    95-104
    Views:
    81

    The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
    The soil of the experimental plots was meadow soil.
    Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
    Results of the sowing time experiment:
    In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
    Results of the plant density experiment:
    We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
    Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

  • Amelioration and arable land-use possibilities of Solonetz soils in the Trans-Tisza region of Hungary
    107-117
    Views:
    176

    Salt affected soils cover about 1 million hectares in Hungary. This paper is based on the research results obtained at the Karcag-puszta long-term experimental site, where, depending on the catena, crusty (A horizon=0–7 cm), medium (A hor.=8– 20 cm) and deep (A hor.>20 cm) subtypes of the Meadow Solonetz soil could be found. The chemical reclamation was made specifically for the given site. Lime was applied on the soils with neutral or slightly acidic top layer, while on the soils with alkaline top layer, gypsum was applied. As regards internal drainage, a tube system with an average depth of 1 m and 5, 10 and 15 m drain spacing was constructed. Decreasing salt and sodium content could be measured both in drained and non-drained soils. The advantage of drainage was that the leachingout extended to the whole layer above the drain pipes, while without drainage, the Na ions exchanged from the upper layers still accumulated at a depth of 60– 100 cm. In the first two decades, the groundwater level was deeper and leaching was the dominant process. Since 2004, due to the frequently high groundwater level, the leaching and deepening of the fertile top layer has been slower.

  • Testing a biological active plant extract’s antifungal effect against soil fungi
    247-252
    Views:
    102

    In Hungary today is about 5 million hectares of agricultural land contaminated with ragweed. The ragweed problem a year is about 60 billion HUF to be paid, of which 30 billion are used to reduce the agricultural damage. Experiments with ragweed pollen has mainly been carried out in connection with terms of allergy. The other biochemical experiments and studies with this plant, have so far been the scientific horizons of public life, boosted the edge. We wanted to demonstrate that the ragweed, which is a weed, containsbiological active (for example: antifungal) compounds. For our experiments in the previous cycle of flowering, plants were collected manually, with its roots and with each plant part. The extraction of the substance from dry plant – meal was carried out using appropriate solvents. The biological activity of ragweed-extracts were tested against fungi isolated from soils and meadow with different mode of cultivation. Our results suggest that ragweed contains biologically active substances, which inhibit the growth of fungi, depending on the concentration of active ingredients of the plant.

  • Technological development of sustainable maize production and its effect on yield stability
    379-388
    Views:
    170
    In 2015 and 2016, we examined the effect of NPK nutrients, sowing date and plant density on yield on typical meadow soil. The amount of precipitation was 282.0 mm in 2015 (January–September), 706.0 mm in 2016 and the 30-year averageis 445.8 mm.
    Agrotechnical factors:
    – Experiment a)
               5 Dow AgroSciences hybrid with three sowing dates and three plant densities
    – Experiment b)
    In 2015 eight, in 2016 ten hybrids with different genetic characteristics and growing seasons, with control (without fertilization), N80+PK and N160+PKtreatments, five plant densities (50–90 thousand) with 10 thousand plants difference between the different densities.
    In a drought year, we reached the higher yield in the earlier sowing date and with the lower lower plant density of 70 thousand plants ha-1-. The maximum yield, depending on the agrotechnical factors, was 10–12 t ha-1 in 2015, while in 2016 it was 14–16 t ha-1. Yield stability can be increased using hybrid-specific cultivation techniques.
  • The effect of the plant density for the yield of the maize hybrids
    50-61
    Views:
    96

    In order to enchance the yield stability of maize, the effect of plant density on yields was studied on a typical meadow soil in Hajdúböszörmény between 2002-2004. In the plant density experiment, we used the method of Béla Győrffy. The plant densities applied therefore 20 to 100 thousand plants/ha by ten thousand scale. The application of fertilizer rates for the maize hibrids in every year were N: 110 P: 90 K: 120 kg/ha. We used a manual soiling-gun in the experiment. In every year we used plant protection techniques against monocotyledonous and dicotyledonous weeds. The harvest was done by hand. The facts were read by variancie analysis and linear regression analysis. The moisture and the temperatures were extreme in 2002, 2003, 2004. We have to mention defficiery of moisture in 2003 which is shown that the hot days number increased. After evaluating our findings we can conclude that most hybrids showed a significant correlation between increased plant density and the volume of yields. On the basis of the experiments we divided the hybrids into four groups: the first group included the hybrids suitable for increased plant density with a wide range of optimal density values; the second group included hybrids, which did not require high plant density, were capable of good individual performance and tended to grow several ears; the third group included flexible corn types, which grew longer ears in favourable years, thus yielded more; and the fourth group included the hybrids, which were sensitive to increased plant density and which showed a narrow range of optimal density values. Finally, plant density determines the yield; we have to consider optimal plant density intervals as well as optimal plant density, and we also have to place a high emphasis on the use of hybrid-specific technologies.

  • The main influencing factors effecting the yield of maize
    137-141
    Views:
    97

    Maize is one of Hungary’s major cereals. In the 1970s and 1980s, we were in the frontline regarding yields and genetic advancement. However, yield fluctuation in maize has increased to 50-60% from 10-20% since the 1980s, which was partly caused by the increase in weather extremes due to climate change and by agrotechnical shortcomings.
    The experiments were carried out on typical meadow soil in four repetitions in the period of 2007-2008. In the sowing time experiment, sowing was performed on 10 April, 25 April, 15 May under a uniform fertilization of N120, P2O580 K2O 110 kg/ha. In the fertilization experiment, the yielding capacity of 10 hybrids with different genetic characteristics was studied in a control (non-fertilized) treatment and basic treatment of N40 P2O5 25, K2O 30 kg ha-1 active ingredient and a treatment with fivefold dosages of the basic treatment. In the plant density experiment, the relationship between plant density and yield was analysed at plant densities of 45, 60 and 75 thousand plants per ha. We found a tight correlation between sowing time and yield and grain moisture content at harvest. We found that grain moisture can be reduced by 5-10% by applying an earlier sowing time.
    The agroecological optimum fertilizer dosage was N 40-120, P2O5 25-75, K2O 30-90 kg ha-1 active ingredient at a plant density of 60-90 thousand plants ha-1 depending on the hybrid and the year.

  • Results of a Fertilization Experiment Performed with Sulphur on Rape Seed Plants
    116-119
    Views:
    125

    The sulphur fertilizing experiment was introduced in the cropping year of 2001/2002, with winter rapeseed. The experiment was performed on a farm in Magyarhomorog, Hajdú-Bihar County. By selecting the location for the experiment, we had to consider the effect of the hard winter that was very unfavourable for rapeseed production, as there was serious frost damage on the sown area previously used for the experiment. In the arable land experiment, results of three different doses of treatment were compared in two replicates, on meadow soil. FitoHorm 32 S solution was used as a sulphur fertilizer, in doses of 3, 6 and 10 l/ha. Evaluating the results, we tried to find a correlation between the amount of fertilizer and the amount of seed-crop or the oil content of the seed. The nitrogen and sulphur contents of the samples were determined using classical methods and an Elementar VarioMax analyser. By this way, it was possible to examine not only the role of Sulphur in rapeseed production, but also to compare and evaluate results obtained by Kjeldahl and the modern, environmentally-friendly combustion method.

  • Influence of Foliar Treatments on the Sugar Yield Changes of Sugar Beet (Beta vulgaris L.)
    108-111
    Views:
    86

    In our small block experiment in randomised blocks, we examined the effect of 6 foliar treatments at 3 different nutrition levels in 2002 on meadow chernozem soil.
    The experiment consisted of 3 blocks, which corresponded to 3 different nutrition levels. The first block was the control, the fertilization rate of the second block was 20 kg ha-1 N, 40 kg ha-1 P2O5, 120 kg ha-1 K2O, on the third block 40 kg ha-1 N, 80 kg ha-1 P2O5, 240 kg ha-1 K2O were applied. We applied magnesium and strobilurin active ingredient (Juwel, BAS 51200), in different combination and with different application dates.
    We found that the foliar treatments with bioactive fungicides significantly influenced the yield and some quality parameters in this field experiment.

  • Element Content of Herbaceous Plants in the Floodplain Meadows
    55-58
    Views:
    111

    Animals require well-balanced nutrition. The elemental content of the vegetation of meadows is influenced by as many factors such as heat, rainfall, irrigation, soil type and nutrients, meadow types, species, aspects of the vegetation period and cultivation.
    Natural meadows used extensively are common sights on river floodplains. Since chemicals are banned and the species number is high, measuring the elemental composition of plants on these meadows is beneficial. Cenological survey and element content measurements were held on the rich flora of four natural meadows in the year 2001.
    Weeds, in a wider sense, are plants not directly involved in growing, although their nutritional values make them important costituents of feed. Meadows are enriched by their relatively high microelement content.
    On the sampling sites, the ratio deviated from the ideal 2/3 parts monocotyledon and 1/3 part dicotyledon, but this did not mean a Mn deficiency as it would have been assumed.

  • Comparative analysis of maize weed control system and the competitive effect of sorghum
    97-104
    Views:
    91

    In our investigation we used different weed control technologies in the different phenology states of the maize. The experiment have been
    carried out in Hódmezővásárhely, in the Experiment garden of the Pilot farm of University of Szeged Faculty of Agriculture, on meadow
    chernozem soil, on 24 m2 plots, in 3 replications, randomized blotch design. The experiment can be regarded as 15 weed-control strategies
    where, in addition to the untreated control, six chemicals or chemical-combinations are applied (Spectrum 720 EC, Motivell Turbo D,
    Stellar + Dash HC, Clio + Akris SE + Dash HC, Clio + Dash HC) in five different times (pre, early post, post and two late post) and eight
    mechanical weed-control technologies were used. Hoeing took place connected to the herbicide treatments in different times: until 2-3-leave
    age weedless, in 3-4-leave age hoed once, from 3-4-leave age weedless, in 6-7-leave age hoed once, from 6-7-leave age weedless, in 8-leave
    age hoed once, from 8-leave age weedless.
    Our results were assessed by chemical efficiency examination, maize length measurement, corncob-length and fertility examination,
    Sorghum plant-number determination and yield weighing carried out in four periods. The data were evaluated by a one-factor analysis of
    variance and a two-factor linear regression analysis.