Search
Search Results
-
The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
39-49Views:122Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety. -
Detailed specification of the steps of dry milling ethanol production
123-126Views:145Durring the 2011 year I was given the possibilty to study in Indiana, USA for 5 months with the help of the Bloomington fellowship, and had the chance to study the bioethanol production in the given state. I focused mainly on the details of corn based dry milling large scale bioethanol production. The dry milling process is a relatively common production mode in the USA. In the coure of my research I tried to compare and to highlite the advantages of the dry milling process contrasted with the wet milling bioethanol production.
-
Study of effects on quality of different wheat flour fraction
123-129Views:151Wheat is one of the most important cereals in the world and the bread made of its flour belongs to the everyday life of human mankind.
The Hungarian standard relating to the laboratory production of wheat flour (MSZ 6367/9-1989) does not mention the type of laboratory mill used for milling, and it only builds up some general criteria, such as: the laboratory mill should be provided with four differently nicked barrels, a sieve with appropriate hole sizes, and also with the separated collections of the pilot flour and the bran. Our study was started at this point and the answers for the following questions were aimed to be found: do the flour patterns studied and produced with different grinding and sieving
techniques, widely used in laboratory mills of the same wheat pattern show any alterations after the impact of the formula production as regards chemical constitutions and reologic parameters. Various flours and whole grains of the wheat patterns sieved with different particle sizes were studied in this experiment. In producing this pattern two different mill types of FQC 109 and CHOPIN CD 1 as well as two different grinder types such as PERTEN 3100 and type of RETSCH 200 were applied. There were 3 different corn sizes of 160; 250; 800 μms used in the partition of the fractions. To study the differences the following measurements were conducted: dry matter, ash, protein content, wet gluten content, gluten index, gluten expansiveness, farinographic value, falling number and amilographic rate.
The results this research confirm that the quality of wheat flour can be modified by different methods of pattern production. In all cases the differences can be explained by the flour-bran ratio, and in some of the cases the higher germ content of the fractions also played a role. The results show differences between the various types of mills and grinders, too.