Search

Published After
Published Before

Search Results

  • Examination of the effect of pelleted poultry manure products on a sunflower test plant in a laboratory model experiment
    83-88
    Views:
    248

    Sunflower (Helianthus annuus L.) is one of the most important oil plants in Hungary, with a sown area of more than 627.000 ha in 2019. Sunflower cultivation is primarily important for use in the oil industry, but its role in feed and beekeeping cannot be neglected either. Sunflower adapts well to different production areas in terms of soil demand, yet, as important fact, it must be grown on soils with poorer conditions with intensive nutrient replenishment. From the agri-environmental point of view, in addition to the use of pelleted poultry manure products, which are also new to the consumer market, is of paramount importance. Their advantages include a wide range of nutrients as well as a soil structure improving effect.

    In our research, we investigated the starter effect of pelleted poultry manure products applied at different doses (200 kg ha-1 and 400 kg ha-1) on sandy soil with humus using a sunflower plant. The aim of our research to investigate the effect of using pelleted fertilizer products as starter fertilizers on sunflower plant germination, and investigate the effect of poultry manure products on soils.

    Based on our results, it can be stated that the pigment content (chlorophyll and carotenoid content) was positively influenced by the higher dose treatments (400 kg ha-1), thus increasing the photosynthetically active leaf area. Compared to the control, the carotenoid content in the test plants of the treatments increased, and the differences of this treatment proved to be significant (p<0.05). Our experiments supported the beneficial effect of pelleted poultry manure-based products in the soil-plant system.

  • Examination and statistical evaluation of physico-chemical parameters of windrow composting
    33-38
    Views:
    253

     

    The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.

    The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.

    The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.

    Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.

  • Testing laboratory parameters of compost tea
    31-36
    Views:
    491

    During the industrial production of broiler chicken, a large amount of manure is produced, of which easily contained nitrogen content (without pre-treatment) is released into the atmosphere as an air pollutant. In our experiments, we aimed to prepare compost tea, also known as water extract of compost, from pre-treated poultry manure in order to create a product can be utilized as liquid nutrient supply. The poultry manure source was the Baromfi-Coop Ltd. located in Nyírjákó, Hungary, where it was treated by composting. As a result of this pre-treatment of the poultry manure, its nutrient parameters improve and nitrogen is present in a form that is better utilized for plants. Furthermore, this product is suitable for further utilization and also can be the base material for a brand-new product. For this reason the effects of compost/water ratio, incubation time, low oxygen level, and extraction time on the parameters of the resulted product were studied in the frame of developing new soil-life enhancing microbial product, so-called compost tea.

    Chemical parameters of the compost used as base material strongly determined the properties of the resulted compost tea, especially the ratio of the various nitrogen forms, their concentration and the salt content. It was found that adding water at a higher rate that means 1/40 and 1/50 mixing ratios results in more cost-effective production. In the experiment the compost tea were held under oxygen-poor conditions, therefore pH of the extractions decreased, which influenced the quality and quantity of their nutrient content.

  • Effect of compost/water ratio on some main parameter of compost solutions
    117-121
    Views:
    271

    Composting is an efficient technology for the utilisation of by-products and waste. It is also suitable for treating raw materials to convert fertilisers that are not recommended for application without pre-processing. Such is the case with poultry manure, which is very important to pre-treat due to its hazardous properties. An increasingly common form of compost is compost tea, which is made by soaking compost in water. In our experiment, we made compost tea from a composted and granulated poultry manure product. Three mixing ratios were used (1/5, 1/10, 1/10) and compost teas were set for three different extraction times (24–48–72 hours). After elimination of the experiment, the pH, EC, and nitrate and ammonium contents of the samples were measured. The aim of this study was to determine whether there is a difference between each mixing ratio and different extraction times. Based on our results, it can be said that the fluctuation of pH values during the experiment was low. Regardless of the mixing ratio and extraction time, the samples were in the slightly acidic range. The electrical conductivity, nitrate and ammonium content follow a similar trend, the values decrease significantly with the increase of the mixing ratio. Similar tendency was observed at the incubation time. The concentrations of both EC and nitrogen forms increase with increasing incubation time, in most cases significantly.

  • Effects of fermented chicken manure products on the N mineralization rate of the soil using the incubation method
    199-204
    Views:
    199

    In our study, the effect of fermented and specially added poultry manure products (superabsorbent polymer (SAP), bentonite and Aegis as a mycorrhizal inoculum) were investigated in a short soil incubation experiment – at 60% water capacity level - on sandy soil. Soil samples were collected from two layers of the incubation pots after the second and fourth week to check the status of the tested products and the processes in the soil. The pH and the electric conductivity (EC) of the samples were measured using an electrochemical method, while the ammonium and nitrate content of the samples was determined with a photometric method. Soil pH and EC values slightly were decreased during the experiment. Our results pointed out that the increasing dose of SAP caused lower soil pH. The nitrate content of the soil did not change significantly during the experiment. It was found that the increasing SAP content in the products, due to its cross-linked structural property, protected the nitrate ions from leaching. Our results suggest that applied SAP does not bind the nutrient ions so tightly in its structure that it competes with the plant for uptake.

  • Effects of fermented and supplemented chicken manure on the nutrient management aspects of an apple orchard
    117-123
    Views:
    145

    AIt is a huge challenge for farmers worldwide to successfully increase the organic matter content of their soils and improve their water balance at the same time. Therefore, the main aim of the study is to develop and test organic-based nutrient composite materials that can be successfully used by farmers to increase soil organic matter content, improve water management parameters and implement water-efficient technologies. The study was performed in the orchard of the Institute of Horticultural Science of the University of Debrecen in Hungary (Debrecen-Pallag). The experiment was set up in a ten-year-old apple (Malus domestica ‘Pinova’) orchard. In the trial, fermented poultry manure and superabsorbent polymers (SAP) were used at different doses to study their effects on soil properties and fruit quality. Applied composite materials increased the nitrate and organic nitrogen content of the soil. Treatments did not affect the sugar content of the fruits but significantly and positively affected the individual fruit weight and the titratable acidity of the fruits.

  • Meat meal and industrial fat as alternative fuels in agriculture
    220-222
    Views:
    78

    I study new energy sources which can replace fossil fuels. As I deal with the burning processes, I have analyzed several kinds of wastes. I think one solution for replacing fossil fuels would be to burn regenerated energy sources in agriculture. For example, oil, industrial fat and meat meal from processing plants are treated as hazardous wastes. There exist non-hazardous wastes for energy recovery, as by-products e.g. sawdust, wood shavings, vegetable oils, stems of plants or poultry manure.
    We should produce energy from the outsides of vegetables and juices, and should produce bioethanol by fermenting vegetable wastes. We could treat the used vegetable oil to make bio-diesel fuel. Meat meal and fat are good alternative energy forms, if burnt in incineration plants. These materials are new renewable sources of energy.
    There are some problems in the use of biomass for energy sources. We have to look for the best loading device and burning processes.