Search

Published After
Published Before

Search Results

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    86

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • Landscape use of protected areas in the Hódmezővásárhely micro-region
    179-193
    Views:
    78

    One of the biggest questions of developing rural areas is that people and organisations living and making their activity there how and in what measure utilize the local or obtainable external
    resources. The concept of the landscape expresses the direct connection of the natural resources with the socio-economic processes. This is a two-way connection, (1) on the one hand the single landscapes provide the unique combination of natural conditions for the socio-economic utilisation which is different from other landscapes, (2) on the other hand as the result of the interaction of natural spheres together with the social and economic spheres the landscapes change in a different manner and in a different measure. The landscape as a territorial unit and as a resource is inseparable from the natural resources, and the nature
    conservation plays an increasingly important role in the use of the landscape and landscape management, which is an essential task not only in protected areas, but everywhere. The natural resources, the landscape, the nature conservation and the landscape use are related tightly, in which the so-called ecological/biological resources and their sustainable use have a
    significant role. 

  • The effect of different compost rates on the yield of ryegrass (Lolium perenne L.)
    95-98
    Views:
    116

    Protection of natural resources and sustainable natural resources management are essential for the long-term survival of humanity. This makes necessary nowadays the development of environmentally conscious living and spread of that in the future. The amount of organic waste materials, produced during human activities, could be decreased by composting instead of dispose them in landfills. Applying appropriate treatment technology and additives, the compost could be used as fertilizer for horticultural crops and it could increase the easily available nutrient content of soils. Compost utilization prevents nutrient deficiencies and by using the optimal rate, we could reach significant yield increases.

  • Soil – Environment – Sustainability
    331-337
    Views:
    179

    The future and life quality of human society depends primarily on the success of the sustainable use of natural resources: the geological strata–soil–water–biota–near surface atmosphere continuum. Soil is the most significant conditionally renewable natural resource in our Earth’s system, with three unique properties: multifunctionality; fertility/ productivity; resilience. In the case of rational land use and precise soil management soil does not disappear, and its desirable „quality” does not decrease considerably, irreversibly and unavoidably. Its renewal, however, requires continuous care and permanent activities.
    Consequently, the prevention, elimination or moderation of soil degradation processes and extreme hydrological situations (the two main factors limiting desirable soil multifunctionality) with rational land use and soil management are the key factors and priority tasks of sustainable development on each level and in each phase of the decisionmaking process.

  • Complex assessment of inland water fish stocks
    74-80
    Views:
    69

    In the domestic fish production, natural waters have yielded for several years about 7-8 thousand tons. This, from the point of view of outputs, considering the almost 130 thousand hectares of natural water, is rather low, it means approximately 55-60 kg/ha mixed fish.Although the various natural waters can differ significantly on the basis of yields, yet on the majority of the territories, the results were low. In the case of our extensive still waters and rivers, the reason can undoubtedly be found in the combined effect of the lack of the possibility of reproduction of the fish stock and the over-fishing. Fishery built on planning supposes the best possible knowledge in the given circum stances of the parameters of the water area and its fishstock. Lacking this knowledge, it is not possible to establish the optimal use fulness of the resources, what is more, the management can make faulty decisions – as a result of a lack of information -, which can risk the success of later activities.
    It is known that many factors have an impact on the success of the fishery, as well as some information in connection with the water area and the fish stock are necessary, the knowledge of which make it possible to manage the fishery in a planned way. One part of the information is available, while the other part is incomplete or not deep enough. The necessary data are dissimilar depending on their nature, can be obtained from different places, by different methods.
    As the first step for executing the field surveys and processing data, I developed a complex model, which contains in a unified system the steps of estimating the fishstock. I made the sampling on the basis of this. Part of the model is a fish faunistic survey, as well as a morphological survey of the water area. The information gained from these are important for making more accurate the system of devices of the samplings for stock estimation (duration, number of net-rows) and for assigning its place (places representing the best way the physical characteristics of the given water area). The major stages of stock-survey: A) faunistic survey, B) physical survey of the bed, and C) sampling with the help of gill-nets. This is followed by the evaluation by the computer module.
    The results of the research create a methodological and technical background for the fish faunistic and population biologic surveys still performed in different ways in our country, and by applying these methods together, all basic information about natural waters which help decision-making concerning fisheries can be obtaine deffectively.

  • Economic Assessment of Biodiesel Production for Hungarian Farmers
    72-76
    Views:
    74

    Utilisation of oil of plant origin as a fuel is gaining acceptance in the European Union and elsewhere. Besides environmental protection, energy saving, and decreasing over-production of food. Additionally, the subsidisation of farmers and the development of rural sub-regions also contribute to its spread. This study specifically focuses on the direct effects biodiesel's raw materials and final products are now having on farmers, while reviewing and quantifying these effects. I have purposely restricted my analysis to these two elements of the biodiesel chain.
    The biodiesel chain seems to be a great method for improving the economic and social position of participant farmers in many ways. Presently, the profitability of raw materials’ production looks to be the crucal point in the chain, and could be strengthened best with intensive, habitat-specific agrotechnic. It would only be possible to reach a favourable profit margin for farmers if yields reach unrealistic averages or if there is a significant hike of the 2000 producer’s price in the oil plant branch.
    The main attraction of sunflower- and oilseed rape production lies in the stabilization of market conditions, which is not only gong to appear in oil plant branch but – thanks to the reduction of outputs – also in the cereal branches. Better economic safety for farmers may play a role at least on the same level as in plant production, which involves more risks than profit maximalization.
    The reduction of the prime cost of biodiesel could be possible through the direct combustion of the whole oilseed plant or its residues or electricity production using them. Whereas energy demand for biodiesel production is low (appr. 5%) but it needs subsidization and the prices of natural gas and electrical energy presently look favourable in Hungary. Additionally harvesting and baling of the residues is technically problematic, which is why their use may seem to be reasonable just over the middle or long term. Another possible factor of cost reduction could be the centralization of some partial operations, which needs serious financial resources to reduce amortization cost per product, provided there be several biodiesel projects near each other during establishment. Creation and operation of a logistical system could also be a good method for improving the viability of the biodiesel chain, in order to optimize transport schedule and distances. However there are also some organizational difficulties in this case.

  • Environmental industry and regional policy in Hungary
    157-159
    Views:
    84

    The paper attemps to define environmental industry. The author has searched the history and background of the rapid development of this process. The study analyses the present and future regional development potential of environmental industry in Hungary.

  • The use of MFA indicators in the characterization of the settlement sustainability
    107-116
    Views:
    69

    One of the key sustainability challenges for the coming decades will be to improve the management of natural resources in order to reduce current levels of anthropogenic environmental pressure and respect the biological and physical limits and the carrying capacity of the planet. The first step towards meeting this challenge is an enhancement of the understanding of the material basis of our society. In the past 15 years, scientists in several research institutes have created a fast growing field of research, a new family of different methods, named material flow analysis (MFA). These instruments have an increasing policy relevance: international organizations (UN, EU, OECD) have encouraged member states to establish MFA accounting in their statistical programmes and urged governments and economic actors to use these tools. In this paper I present selected examples to reveal how the MFA approach and derived material flow indicators can be used for the evaluation of sustainability policies at municipality level.