Search
Search Results
-
New methods of compost homogeneity determination in sewage sludge based compost prisms
49-52Views:183There is no effective method of homogeneity measurement of compost prism. The most frequently used technology is the examination of the particle distribution. This method needs a lot of time and large number of samples. The aim of our research is establishing different effective methods to determine the homogeneity of compost prisms. During our work, we examined the homogeneity of a prism made of sewage sludge and saw-dust mixture.
The measurements were based on the different properties of raw materials. According to this we examined the homogeneity by moisture content, heavy metal content and gas distribution measurements.
The most effective method is the measurement of gasconcentration. Although gas-concentration measurements it need special equipment it has more advantages than the other methods. The examination of gas-distribution compensates the problem of sampling because the measurement is direct. It provides the opportunity to estimate the amount of emitted toxic gases and to determine the maturity of the compost and the effectiveness of the degradation. -
Analysis of aerobic biological waste treatment methods especially in the case of composting
33-37Views:165In recent years the regulations of the EU unambiguously determine that the biodegradable wastes should be used in agriculture. The characteristics of the organic wastes in most cases make the direct utilization impossible, they need pre-treatment before use. One treatment solution of these wastes is composting. During composting the organic wastes lose their hazardous characteristics and we gain a final product, the compost, which can be used in agriculture as organic fertilizer. The main conditions of effective composting are the follow and understand of the degradation process. During our research we examined different measuring methods (gas concentration and reflectance measurements, temperature mapping) that makes a cost and time effective possibility to directly analyze the degradation.
-
Long-term effect of soil management on the carbon-dioxide emission of the soil
515-527Views:135CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil, regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.
-
Examination of CO2 emission of different stubbles on a chernozem soil
53-59Views:95Applying alternative soil cultivation methods based on reduced disturbance of the soil more favourable conditions can be created in order to increase the organic matter content of the soil and the availability of the nutrients for the crops. In complex soil tillage experiment – in 1997 was set on – at Karcag, as the element of the investigation of soil reduced and conventional tillage systems. There is close correlation between the degree and intensity of CO2-emission from the soil and the structural state and organic matter content of the soil. In order to quantify the increased CO2-emission from soil due to soil preserving cultivation systems, in situ CO2-emission of soil was measured by means of an ANAGAS 98 infrared gas analyser. The soil type of the investigated plot is meadow chernozem solonetz in the deeper layers, a soil type that is characteristic
for the Trans-Tisza Region of Hungary. In this paper the results gained from the measurement on different stubbles are published, as we consider stubbles the most suitable state when the effects of different soil cultivation systems on the microbiological activity of the soil can be compared. Experimental data provided information about the length of the time period when CO2 emission increasing effects of soil cultivation are observable. Studying the effect of different soil cultivation methods on the CO2 emission from chernozem soil is indisputably actual and needs more efforts as it can contribute to develop a more environmental friendly agricultural production. The main goal of these measurements was to determine the effect of soil cultivation technologies and certain agrotechnical elements on the factors of the soil carbon cycle. -
The effect of crop coverage on the daily dynamism of the soil’s CO2 emission
97-102Views:141Nowadays one of main goals of international ecosystem research the measurement of greenhouse gases (CO2, N2O and CH4) in different places. The fluctuation of these greenhouse gases – quantity and trend in the case of CO2 and CH4 – could be diverse with atmosphere because it depends on several effects of factors like climate, soil type, vegetation. In grassland out of the three greenhouse gases which fill a part in gas emission, in the case of CO2 soil and vegetation are the most important factors (Soussana et al., 2007).
In the aspect of global carbon balance grasslands are very important by their large area extension, total carbon content, organic content store (10% of the global carbon storage) (Lemmens et al., 2006). In this summer measurements were carried out to determine CO2 emission of the soil from different soil surfaces like grass covered and bare soil surface during a whole day. -
Sight-specific development of the tools for the measurement of CO2-emission of the soil
53-58Views:97Soil is the main source and at the same time the potential sink of greenhouse gases (e.g. CO2, CH4). Measurements were carried out in the experimental sites (soil tillage experiments and an extensive pasture) of the Karcag Research Institute of University of Debrecen, Centre for Agricultural Sciences to determine the CO2-emission of the soil. The in situ CO2-emission of soil was measured by means of an ANAGAS 98 infrared gas analyser in plastic (PVC) chambers, but this previously applied method (cylinders) was not suitable for the soil surface covered with grass,
hence a new instrument was needed to be invented. In order to measure CO2-emission on a larger area without deep disturbance of the soil, a special metal frame was created with a matching bowl. The most problematic part was the spatial delimitation of the measurement area as the surface of the soil can be very various and proper isolation is a must. We consider the frame+bowl method we developed suitable for measuring CO2-emission of pastures as well as other crop-fields. -
The examination of the marigold’s (Calendula officinalis L.) nutrient requirement in small-plot trial
61-66Views:185During our research we investigated the marigold's (Calendula officinalis L.) nutrient requirements with different fertilization treatments in small-plot trial. We measured the harvested marigold's drug's raw and dry weight on a weekly basis from July 6th until August 17th. We were using SPME (Solid phase microextraction) and GC-MS (gas chromatograph-mass spectrometer) to examined the effects of the different fertilization settings for the herb's main active ingredients of essential oil's percentage.
It was concluded, based on the results, the N30P40K60 fertilization setting is ideal in terms of the quantity of the marigold drug. Both the raw and the dry weights' measurements of the case, this fertilization setting have the most important effect on the herb's yield. The analysis of variance didn't show significant differences between the plots with different fertilization settings. We discovered relationship between the drying loss and the increasing quantities of nutrients. We think it may be possible the Alpha-thujon's and Alpha-cadinol's production and the drying loss's data are connected, which appear to confirm the N15P20K30 treatment's data.