Search
Search Results
-
Azoxystrobin resistance of Botrytis cinerea Pers.:Fr. isolates
56-63Views:108Fungicide resistance is one of the most important problems endangering the effectivity of practical plant protection today. The frequent and subsequent usage of specific fungicides results the emergence of resistant fungal populations. This threatens is especially high in case of Botrytis cinerea Pers.:Fr. being an endemic pathogen with frequent infection. Nowadays the main method of protection as against Botrytis cinerea is the application of chemical fungicides chemicals. Therefore, a better knowledge of local populations is necessary for the planning of the protection procedures.
Based on the results of our examinations we may establish that the growth of the examined samples showed a significant difference under in vitro circumstances, which shows a great deal of variability of the Botrytis cinerea populations in Hungary. Twenty-five Botrytis cinerea samples from different hosts were analyzed in this study. High resistance was found towards azoxistrobin in seven cases, and low resistance in eight cases.
It was also proved, that the B. cinerea is able to bypass the inhibition site of the azoxistrobin via the alternative oxidase. The presence of this altermative mitocondrial electrotransport route considerably reduces the effectivity of the chemical. -
Q-PCR analysis of the resistance of Hungarian Botrytis cinerea isolates toward azoxystrobin
41-44Views:120The genes being in the mitochondrial DNA primarily encode the enzymes of cellular respiration. Fungicides belonging to the family of quinol oxidase inhibitors (QoIs) play on important role in the protection against several plant diseases caused by fungi. These fungicides bind to the cytochrome bc1 complex so they block electron transport between cytochrome b and cytochrome c1. This way these fungicides inhibit the ATP synthesis consequently they inhibit the mitochondrial respiration. The QoI resistance has two mechanisms. One of them is the point mutation of the cytochrome b gene (CYTB), e.g. the substitution of a single glycine by alanine at position 143 results in high-resistance. The other is the cyanide-resistant alternative respiration sustained by the alternative oxidase.
In a cell there are several mitochondria. The phenomenon when the genomes of all mitochondria in the cell are identical is called homoplazmy. If in the cell there is wild and mutant mitochondrial DNA this is called heteroplasmy. Whether the mutation in the mitochondria causes fenotypical diversity or does not depend on the dose, i.e. it depends on the percentage of the changed mitochondrials. During our work we investigated Botrytis cinerea single spore isolates which have been collected in 2008-2009 on different host plants. Our goal was to decide whether heteroplasmy influences the level of resistance. We managed to detect the change of the level of heteroplasmy, so the change the level of the resistance due to the treatment with fungicide. -
Population genetic results of Hungarian Botrytis cinerea isolates establishing new technologies with decreased chemical usage against grey mould
259-261Views:127Botrytis cinerea causes gray mold on a high number of crop plants. Information about the populations of plant pathogen fungi may help to develop new strategies for the effective and economic crop protection with reduced fungicide usage. Hungarian B. cinerea populations were characterized with using different molecular genetic parameters. B. cinerea group I strains, characterized with high rate of fenhexamid resistance, could be detected only in restricted number. The Hungarian B. cinerea populations were characterized with high genetic diversity, and the regular occurrence of sexual reproduction. These results highlight the importance of rotating different type of fungicide in the plant protection technology against grey mould.
-
Effects of paraffine oil on leaf and berry mycobiota on two grape varieties
61-66Views:213Application of fungicides have advantages and also some direct or indirect disadvantages, such as imbalance and/or fungicide resistance in microbe population. To avoid these problems the development of alternative, eco-friendly methods like mostly spraying with oils are in the focus nowadays. The investigations of the effects of fungicides on microbiota in some cultivations can give a more complex view to this topic and developmental possibilities. In the present study, our aim was testing of the effects of paraffine oil (as alternative fungicide) on microbial properties (CFU and rate of filamentous fungi and yeasts) of Chardonnay and Kékfrankos leaves and berries.
Our results from 2014 showed that the application of paraffine oil as sole spray agent can decrease the presence of saprophytic filamentous fungi on the berries of Chardonnay (susceptible for fungal infections). In the case of Kékfrankos berries opposite properties were observed, which may be the result of the absorption of oil by the thick wax layer of this variety. The oil treatment did not affect the yeast population of Chardonnay and Kékfrankos berries contrary to negative effect of the regular pesticide treatment. The selective fungicide effect of paraffine oil against filamentous fungal population caused the accumulation of yeast cells in the mycobiota of grape berries. The careful use of this yeasts in spontaneous fermentation can improve the aroma profile of wines. The year of 2015 did no prefer the growth of fungi, therefore no interesting properties were detected in the mycobiota of grape varieties. The occurence of the harmful saprophytic filamentous fungi predicted to be increased in mild climate agricultures as the result of the climate change.
In summary, the paraffine oils are seem to be promising tools for the eco-friendly control of harmful fungi of grapes.
-
Testing of paraffin oil efficiency against grape powdery mildew in Eger wine region
73-80Views:410The aim of the present study was to examine the efficiency of paraffin oil against powdery mildew in Eger wine region. The experiment has been carried out in 2013 and 2014 with Chardonnay and Kékfrankos grape varieties, which have different resistance against powdery mildew. The effectiveness of the oil was examined on leaves and clusters (frequency and intensity). This oil was effective against Erysiphe necator infection on field trials in Chile and Brazil. The spread of downy mildew (Plasmopara viticola) was also inhibited by this material in some experiments conducted in Spain and France.
The differences between oil treatments represented the sensitivity of the grape varieties in accordance with the applied dosages. The oil was effective against powdery mildew with different extent as a result of the so called ”vintage effect”. In 2013, the treatment of the highest dosage (D3) didn’t differed significantly in frequency and intensity of infection from the regular treatment (clusters of Kékfrankos, leaves of Chardonnay). In 2014, the oil was not so effective against powdery mildew compared to 2013. No remarkable differences were detected between the treatments due to the strong pressure of powdery mildew. Furthermore, no any effect of the lowest dosage (D1) was detected in the case of the sensitive clusters of Chardonnay and leaves of Kékfrankos in both experimental years.
In summary, the oil treatment has an effect against powdery mildew, however this efficiency largely depends on the vintage characteristics and the pressure of powdery mildew. Further investigations are neccessary, for example field trials with combinations of other sprays. The oil can be useable as fungicide with proper care in eco-friendly integrated and bio (ecological) viticulture.