Search
Search Results
-
Complexity of ecosystem services in agricultural fields, in particular the biodiversity
43-51Views:144Since the Convention on Biological Diversity a lot of papers have been published how to measure and value biodiversity. In the last decades publications on agro-ecosystems become more frequent and play a significant role in the provision of ecosystem services. There is a uniform definition for biodiversity in general, however, in terms of agro-ecosystems and their services (including biodiversity) many weaknesses can be identified. The objective of this paper is to explore some of these problems with special regard to different definitions and terms and to the farmland ecosystem services. One solution could be to adopt a more complex system which has some ecological and environmental components (air, water and soil pollution) and also takes in to consideration the efficiency of agricultural production.
-
Challenges and agroecological approaches in crop production
75-89Views:178Never has the need been greater for an ecosystem approach to agriculture. As our global population exceeds 9 billion in the next 30 years, with a concomitant demand for agricultural products, ever more pressure will be placed on our agricultural systems. Meanwhile, climate change is altering the ecological settings in which agriculture is practiced, demanding adaptation. Knowledge generated by long-term research will help to address one of the grand challenges of our time: how to meet sustainably the growing world demand for agricultural products – in a way that minimizes environmental harm and enhances the delivery of a diverse array of ecosystem services.
-
Environment-friendly nutrient supply in the area of NYÍRERDŐ Zrt
111-116Views:125The widespread realization of environmental friendly management is an important segment of seeking sustainable technological and
technical solutions. The methods ensuring sustainable development by exploiting natural facilities have great significance. Bacteria-based
biofertilizers and wood ash are good examples of them. Using bacteria-based biofertilizer means a kind of biofertilization that is using the
possibilities provided by the ecosystem. -
Examination of nutrient leaching dynamics of Solidago virgaurea in Hévíz Lake and Hévíz canal
207-211Views:130The different nitrogen and phosphorus elements are prime constituents of the ecosystem and can exert a major effect on aquatic species and the overall ecological cycle. During our investigation we examined the nutrient leaching dynamics in decomposing leaf litter (stem and leaf blades) of Solidago virgaurea. We chose four different sampling sites during the winter period with different water temperatures in the Hévíz Lake and Hévíz canal. The bottles containing the plant material and water were incubated at natural temperatures and the fluid was removed at particular times. Water parameters such as pH level, conductivity, nutrients (ammonium and phosphates) were measured. In the case of Solidago leaf, we obtained higher values for all parameters compared to the stem ones.
-
The effect of crop coverage on the daily dynamism of the soil’s CO2 emission
97-102Views:141Nowadays one of main goals of international ecosystem research the measurement of greenhouse gases (CO2, N2O and CH4) in different places. The fluctuation of these greenhouse gases – quantity and trend in the case of CO2 and CH4 – could be diverse with atmosphere because it depends on several effects of factors like climate, soil type, vegetation. In grassland out of the three greenhouse gases which fill a part in gas emission, in the case of CO2 soil and vegetation are the most important factors (Soussana et al., 2007).
In the aspect of global carbon balance grasslands are very important by their large area extension, total carbon content, organic content store (10% of the global carbon storage) (Lemmens et al., 2006). In this summer measurements were carried out to determine CO2 emission of the soil from different soil surfaces like grass covered and bare soil surface during a whole day. -
Experiments on the Nutrient Removal and Retention of an Integrated Pond System
18-23Views:205A combined intensive-extensive fishpond system developed for the purification and re-use of intensive fishpond effluent water was studied during a three-year experimental period. The investigated pond system consists of five small-size intensive culture ponds of 1 ha total water surface area with 1.5 m water depth and a 20 ha extensive culture pond with 1.0 m average water depth. The water was recirculated between the intensive and extensive ponds with around 60 days retention time in the extensive treatment pond.
Carbon, nitrogen and phosphorus budget and water purifying capacity were described and evaluated by means of regular measurements of nutrient concentrations in the water and sediment. During the three-year test period, 81.5% of organic carbon, 54.7% of nitrogen and 72.2% of phosphorus were retained by the system as a percentage of the total input of each nutrient. A significant amount of the total nitrogen input was removed by the harvested fish, which was much higher than in traditional fishponds or intensive fish culture systems. The efficiency of nutrient removal is clearly indicated by the 27.3% nitrogen assimilation.
Only a small percentage of the total nutrient input was discharged into the environment during fish harvest, which was 9.0% for organic carbon, 13.2% for nitrogen and 12.1% for phosphorus. The combination of intensive and extensive fishponds with water recirculation resulted in significant reduction of nutrient discharge into the surrounding aquatic environment, primarily due to the high nutrient processing and retention capacity of the extensive fishpond ecosystem. -
Ecological Conditions of Agricultural Land Use in Transcarpathia
190-194Views:93The unbalanced anthropogenic effects for several decades resulted in significant technogen damages in the ecosystem of Ukraine. Excessive land development, including the use of slopes, effected the disintegration of the natural balance of lands – arable-lands, meadows, forests, and watershed areas – producing quite a negative effect on the landscape’s nature itself. It has to be stressed that according to other indexes, too, agricultural lands show a tendentious deterioration.
Erosion, caused by water and wind, is one of the most influential factors in the degradation of agricultural soils and in the reduction of the productiveness of benefital lands. Nowadays the degree erosion became significant and it directly endangers the existence of the soil which is a principal chain-link of the agricultural cultivation as well as an irreplaceable element of the biosphere.
The social and political changes in Ukraine’s life demand fundamental modernization in the land utilization both in ecological and in economical aspects. However, these aims can be realized only if, during the developments, we base on the up-to-date results of agronomics, and we do further research in the relations of agricultural land use and environmental protection. According to the latest theories, rational and environmental-safe agricultural production relates to the optimum correlation of the natural- and agricultural- ecosystems as well as to the reconstruction of agricultural areas built on the basis of environmental protection. -
Practical experiences of a designing and operating a pilot aquaponic system
27-32Views:335Aquaponics is the combination of fish farming (aquaculture) and the soilless cultivation of plants (hydroponics). The aquaponics system is an artificial, recirculating ecosystem, in which bacterial processes convert the waste materials in the water used for fish rearing into plant nutrients, and therefore with the generated heat it is suitable for culturing economically valuable plants, and thus it mitigates the nutrient laden and quantity of the intensive fish producing systems’ effluent water.
The primary goal of our 12 separate unit’s aquaponics system was to gain experience. We would like to find the right plant species, which are fit for that medium, and their crop can be sold. Besides the plants, our attention focused on the fish. Two fish species were included in the experiments, the common carp and barramundi. It was difficult to create them a perfect living space, besides a constantly changing conditions temperature. Apart the above mentioned we had a problem with the number of individuals per tank, the deformity of the fish body and the too high volume of pH (we registered continuous values above 8.4). We get by carps 4.7 grams of weight gain during 15 weeks, because of the bad conditions.
The main problems at the plants are caused by aphesis and protection against sunburn. Even so we have got the multiples of field yields for each plant species. At salad has grown twice of field yields, tomatoes one and half, kohlrabi than 3.5 times more. The causes of multiple yields are the continuous balanced water and the nutrient uptake of plants. Each plant species fit for cultivating in aquaponics and their crops are delicious, chemical -free, safe and marketable. The plants should be more concentrated. After the experiment, it has been determinated that the carp is suitable for aquaponics, but greater weight gain could be achieved with optimal selection of size of rearing units.
-
Monitoring the oxygen level in the Szarvas-Kákafok Deadarm
170-173Views:86The water quality of the Szarvas-Békésszentandrás Dead Körös is generally meso-eutrophic, and meso-saprobic. However, particularly
under higher temperature conditions, the water body may change toward the eutrophic state, even algal blooms could be observed
previously.
The present measurements were conducted during a two week period, twice a day. Three water samples were taken horizontally, from
the surface, bottom and the middle of the water body. The samples were examined in situ. The oxygen content, the temperature, the pH and
the conductivity were measured by potentiometric methods.
Increasing pH was detected in correlation to the temperature, which indicated a rising photosynthetic activity. Also, the O2
concentration showed high variations, especially, when the fresh water supply from the river was stopped, due to a small flood in the river
Körös.
These results indicate the increasing eutrophication processes in the deadarm, and the high load and instability of the ecosystem. -
Possibilities of biodiversity conservation in agricultural fields
39-45Views:149The biodiversity loss is one of the biggest environmental problems in the world. The objective of this paper is to present some nature conservation practices on agricultural land. Farmlands play a significant role to preserve biodiversity because some highly protected species can only find their needs on agricultural land. The Biodiversity Strategy of the European Union (2010-2020) creates new directives to reduce biodiversity loss, preserve and improve diversity, especially on agricultural land. Furthermore the importance of this subject is that the share of farmland in Hungary is much higher (57%) than in the EU-27 on average (42%). The loss of agricultural land and the increase of land abandonment cause intensification of agricultural production leading to the loss of biodiversity.
-
Optimized balance between crop productivity, restoration and maintenance of vital soil functions and soil carbon sequestration and storage – the SmartSOIL (FP7) project
213-215Views:119Soils provide the most indispensable function of supporting the production of food and feed for a growing human population. At the same time they provide a range of regulating and supporting functions related to climate change and removal of greenhouse gases. The majority of the soil functions are closely linked to the flows and stocks of soil organic carbon (SOC); low levels of both flows and stocks may seriously interfere with several of the essential soil functions and thus affect the ecosystem services that soils deliver. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by intensive cultivation practices in agriculture. The aim of the SmartSOIL project is to link the results of different scientific fields through a holistic and multidisciplinary approach and as a result develop a decision making tool contributing to sustainable development.