Search

Published After
Published Before

Search Results

  • Preparatory study for carbon sequestration modelling of agroforestry systems in Hungary: The assessment of the yield class distribution of windbreaks
    73-78
    Views:
    85

    The escalating carbon dioxide emissions leading to global climate change are acknowledged as a paramount environmental challenge in the twenty-first century. The significance of land use systems in stabilising carbon dioxide levels and enhancing carbon sink potential has gained noteworthy attention from both the scientific and political communities. The Intergovernmental Panel on Climate Change emphasises that agroforestry systems present vital prospects for synergising climate change adaptation and mitigation efforts, offering substantial technical mitigation potential. Windbreaks are well-known agroforestry systems in Hungary and form an important part of agricultural landscapes. The improved agroforestry subsidy system in our country makes it relevant to model the carbon sequestration potential of windbreaks. In the framework of the ForestLab project we plan to develop a carbon sequestration model specific for Hungarian agroforestry systems. In this study, as a preparatory step of the model development, we assessed the yield class distribution of Hungarian windbreaks by tree species group and identified variables that had significant effect on yield class based on the data of the National Forestry Database. Our results show that among the examined effects the most important predictor of the yield class of windbreaks was the tree species group, followed by the thickness of the productive soil layer and the hydrology of the site.

  • Optimized balance between crop productivity, restoration and maintenance of vital soil functions and soil carbon sequestration and storage – the SmartSOIL (FP7) project
    213-215
    Views:
    120

    Soils provide the most indispensable function of supporting the production of food and feed for a growing human population. At the same time they provide a range of regulating and supporting functions related to climate change and removal of greenhouse gases. The majority of the soil functions are closely linked to the flows and stocks of soil organic carbon (SOC); low levels of both flows and stocks may seriously interfere with several of the essential soil functions and thus affect the ecosystem services that soils deliver. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by intensive cultivation practices in agriculture. The aim of the SmartSOIL project is to link the results of different scientific fields through a holistic and multidisciplinary approach and as a result develop a decision making tool contributing to sustainable development.

  • Yield and sward composition responses of a native grassland to compost application
    35-38
    Views:
    212

    A major part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be realized, the grassland based animal husbandry can be an efficient way of food production. In addition these ecosystems have an important role in carbon sequestration, and with their rich flora – and the fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. The first type of compost was a natural one (N) without any additional material and the other one was enriched in phosphorus (E). Both was produced by the research institute, made of sheep manure. Three rates of compost (10 t ha-1, 20 t ha-1,30 t ha-1) were tested on 3 m×10 m experimental plots. Every treatments had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield and crude protein content was measured in laboratory and with the received data the yield per unit area was calculated. Based on the research results we can say that the application of compost in any dose inflicts higher dry material and crude protein yield. The changes were partly due to some positive changes in sward composition, because of the better nutrient conditions. The research results indicate, that use of organic compost can be an efficient way to increase grass yields in a sustainable way.

  • Mitigation and adaptation measures in the hungarian rural development programme
    245-250
    Views:
    82

    In the Hungarian Rural Development Programme (RDP) climate change adaptation is addressed through the measures in Axis 1, 2, 3 and 4. Under Axis 1 farmers can receive support for farm modernisation that will help them adapt to climate change. The processing industry will also be able to use the available resources for capital expenditure on buildings and new equipment. Axis 2 and especially the soil and water package within the agrienvironmental
    measure aim to support production methods, which protect soil quality and will help adaptation to climate change. Measures of Axis 3, such as basic services for the economy and rural population, village renewal and development will provide local communities the opportunity to identify actions that can be undertaken to deal with the effects of climate change. On the other hand, the extension of forest resources contributes to climate change mitigation and enhances carbon sequestration. New methods have been elaborated to the sustainable regional water management, irrigation, water regulation, defence against internal water, and soil protection established. Water management contributes to the balance of water quantity on one side, but also to mitigating the climate change on the other.