Search

Published After
Published Before

Search Results

  • Genetic polymorphism of candidate genes in pig meat production
    37-40
    Views:
    92

    H-FABP, LEPR and MC5R genes were suggested as candidate genes for fat content in pig meat. The aim of this study was to detect genetic variation in the porcine H-FABP, LEPR and MC5R genes by PCR-RFLP method in a group of pigs. Genotyping of pigs was done by PCRRFLP methods. We identified three genotypes in the set of pigs, HH (0.504), Hh (0.412) and hh (0.084) for H-FABP (HinfI). Allele H showed higher frequency than allele h (0.710 vs. 0.290). Three genotypes were identified for the H-FABP (HaeIII) gene (DD - 0.194, Dd - 0.494, dd - 0.312). The allele D (0.441) showed slightly lower frequency than allele d (0.559). All three genotypes were identified for LEPR (HpaII) in the group of pigs (AA – 0.137, AB - 0.314, BB – 0.549). Higher frequency of LEPR gene was confirmed for allele B (0.706), as compared with allele A (0.294). We identified two genotypes for MC5R (BsaHI) in the group of pigs (AA - 0.348 and AG - 0.652), genotype GG was not found. As conforms with genotype structure, we recognize a higher frequency of allele A (0.674) as compared with allele G (0.326). 

  • Influence of H-FABP gene polymorphisms on slaughter value of hybrid pigs
    55-60
    Views:
    211

    The H-FABP gene was defined as a potential candidate gene influencing the fat deposition traits, primarily the intramuscular fat content. The aim of this study is to define whether the previously reported gene mutations are connected with the slaughter traits measured in a standard slaughterhouse. The study included data from 405 gilts and barrows from 2 different samples. The two chosen mutation (HFABP1: c. 103 T>C, HFABP2: c. 1970 T>C) were detected in one reaction with PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Lenght Polymorphism) method with HinfI restrictoin enzyme. The allel frequencies are as follows: 103T(H)=0.75; 103C(h)=0.25, 1970T=0.32; 1970C=0.68. A HFABP1 mutation has significant effect on backfat thickness and lean meat % at stable 1 (sample 1), but there were no effect at stable 2 (sample 2). The analysis of values of production traits, depending on HFABP2 genotype did not reveal significant differences. Based on this study we can’t get a clear conclusion on the impact of polymorphisms on production parameters. In the examined flock the allele frequency of mutation in 5 'UTR is identical to the literature data, i. e. the more favorable variant regarding the intramuscular fat content is predominant in the population.

  • Single nucleotide polymorphism analysis in meat-production related genes in broiler chickens
    79-82
    Views:
    157

    In broiler chickens, the intensive selection for growth rate, feed efficiency, body composition (breast muscle weight) traits in the last decades was successful. To improve economically important characteristics, it is possible to use molecular markers associated with meat production traits. The aim of this study was to examine genotype polymorphisms in ROSS 308 broilers for thyroid hormone responsive Spot14α, insulinlike growth factor 1 (IGF1), IGF-binding protein 2 (IGFBP2), somatostatin (SST) and prolactin (PRL) genes. A further goal of this investigation was to study the relationship between the polymorphisms and phenotypic characteristics.

    In the investigated broiler population, the frequency for CC homozygous genotype was 0.77 in Spot14α (AY568628), AA homozygous genotype was 0.80 in IGF1 (M74176), GG homozygous genotype was 0.85 in IGFBP2 (U15086), DD homozygous genotype was 0.60 in PRL (FJ663023 or FJ434669). Only the AA homozygous genotype was found in SST (X60191). Chickens with AC genotype in Spot14α, and with GG genotype in IGFBP2 had higher body weight (BW) and carcass weight (CW), compared to CC and GT genotypes. However, the differences were not significant (P>0.05). There was significant association (P<0.05) between PRL genotypes and body and carcass weight, where chicken with homozygous DD surpassed individuals with homozygous II genotypes.

  • Effect of G2548A polymorphism in the leptin gene on the BMI level in human population
    5-10
    Views:
    129

    The polymorphism in leptin (LEP 2548A) seems to influence obesity among others genes. The aim of this study is to investigate the effect of the G2548A polymorphism on body mass index. We included 79 people from Slovakia with some genetic relatedness and used barrels kit to isolate the genomic DNA from an adenoblast swab- from the salivary. PCR products were amplified by pursued polymorphisms and G2548A, we restriction-analyzed them and then we identified the specific fragments describing the presence of chosen SNP polymorphism by the agarose electrophoresis, to analyze SNP polymorphism by PCR-RFLP method.

    The LEP gene had increased frequency of G allele (0.5506). The most common genotype occurring in the gene LEP was heterozygous genotype (AG) and the least frequent genotype in LEP was AA (0.1899). Taking the age into account the BMI is higher if the G allele occurs in the LEP gene. Moreover, if the G allele genotype was situated in dominant form, then the highest average BMI was present.

    According to the results we can assume that the AA genotype (LEP) has a protective effect on the prevalence of obesity compared to the other genotypes.