Search
Search Results
-
Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress
105-110Views:320Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.
-
Assessing the impact of salinity stress on some morpho-physiological traits of two chickpea genotypes under hydroponic conditions
47-53Views:9Evaluating the performance of crop species to salinity stress is considered an intricate task due to differences in performance, response and susceptibility at different phenological stages of chickpea crop. Assessment of the performance of chickpea genotypes in response to NaCl-induced salinity stress at the initial vegetative phase is of great importance to have a crystal idea about the threshold level of tolerance. An experiment was carried out under hydroponic conditions to evaluate the performance of two chickpea genotypes (ELMO and ORION), in response to different salinity levels (0, 25, 50 and 75 mM NaCl) as factorial arrangement under completely randomized design with three replications. The average of shoot and root dry matter weight was significantly higher for the ELMO genotype at the control treatment (1.143, 0.4133 g respectively), while it was significantly lower in the two genotypes ORION and ELMO at the highest salinity level (0.267 and 0.2700; 0.0433 and 0.0533 g respectively). The root to shoot ratio was significantly higher in both genotypes in the control and the lowest salt level (25 mM NaCl), without significant differences among them (47.98, 43.30, 37.10 and 36.25% respectively). The relative water content and stomatal conductance were significantly higher in the ORION genotype (88.01%; 335.40 mmol m-2 s-1) compared to ELMO (84.09%; 299.10 mmol m-2 s-1), and increasing salinity level caused a proportional decline in both traits, where they were significantly lower at the highest salt level (75Mm) (77.45%; 87.50 mmol m-2 s-1). Results indicate genotypic variability in response to NaCl-induced salinity stress under hydroponic conditions and the physiological traits are more expressive and reliable as selection criteria than morphological ones.