Search

Published After
Published Before

Search Results

  • Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
    43-48
    Views:
    150

    The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.

    Physical and chemical properties of the soil and the microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.

    The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.

    We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.

    The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.

  • The impact of fertilisation on a few microbiological parameters of the carbon cycle
    45-50
    Views:
    215

    The 30 years old long-term experiment of Látókép is continued in our experiments. The long-term fertilization experiment was set in 1983, and our sample was taken in spring 2014. The examinations of soil respiration processes and factors that influence soil respiration are required in optimal management. In our study, we interested to know how the growing levels of fertilization influence the microbial processes under nonirrigated and irrigated conditions in maize mono, bi, and triculture. The experimental results and those statistics suggest that the bi and triculture influenced higher microbial activity which was reflected in number of fungus, soil respiration, and microbial biomass carbon (MBC).

  • Comparative analysis of certain soil microbiological characteristics of the carbon cycle
    137-141
    Views:
    150

    In our researches, we examine the soil microbial parameters related to the carbon cycle. In this study, we compare the changes of microbial biomass carbon (MBC) and the soil CO2 production in soil samples which were taken in spring and autumn. The 30 years old long-term experiment of Debrecen-Látókép is continued in our experiments. The long-term fertilization experiment was set in 1983, and our sample was taken in spring 2014. The examinations of soil respiration processes and factors that influence soil respiration are required in optimal management. In our study, we interested to know how the growing levels of fertilization influence the soil respiration and microbial biomass carbon under non-irrigated and irrigated conditions in maize mono, bi, and triculture.

  • Change of soil nitrogen content in a long term fertilization experiment
    39-44
    Views:
    159

    The most important aim of sustainable agriculture is to ensure our natural resources – such as soils – protection, which includes fertility preservation and the use of appropriate methods of cultivation.

    If we want to get accurate information about the occurred changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest.

    Nitrogen is an essential element for living organisms and it is present in the soil mainly in organic form. In general only a low percentage of the total nitrogen content can be used directly by plants in the soil. The mineral nitrogen is incorporate by plants into our bodies. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it gets into the soil by fertilization. This is how nitrogen turnover occurs when mineral forms become organic and organic forms become mineral.

    The objective of this publication was to introduce – through some element s of nitrogen turnover- how changing the properties of soil in a long term fertilization experiment.

    We established that the fertilization is influenced the soil pH. With the increase of fertilization levels increased the acidity of the soil, maybe it is related with the number of nitrification bacteria. The fertilization and the rotation affected to the quantity of nitrate.

  • Change of mineral and organic nitrogen forms in a long term fertilization experiment (literature)
    43-47
    Views:
    127

    The research topic has timeliness, since the rational utilization and protection of the soil, besides the conservation of its diverse functions is part of the sustainable development. Research of the long-term experiments is esentially important, because it can model the term effects in the same place, under the same conditions. If we want to get accurate informations about the occured changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest. Nitrogen is an essential element for living organisms, it is present in the soil mainly in organic form. In general only only a low percentage of the total nitrogent content can be used directly by plants in the soil. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it get into the soil by the fertilization. The plants incorporote the mineral nitrogen into our bodies. This is how nitrogen turnover is realized when mineral forms become organic and organic forms become mineral.

    The purpose of our paper is to make a literature before our research.

  • Challenges and limtations of site specific crop production applications of wheat and maize
    101-104
    Views:
    148

    The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.