Search

Published After
Published Before

Search Results

  • Overview of the evolutionary history and the role in citric acid production of alternative oxidase
    83-88
    Views:
    148

    All organisms are exposed to countless environmental effects, which influence in a disadvantageous way their life processes. They continuously adapt to the changing conditions and respond to the stress impacts by defence mechanisms. Through different signal transduction pathways they are able to increase or decrease the expression of their genes and consequently modify their metabolic processes. My interest focuses on alternative oxidase (AOX) enzyme whose expression is often increased under biotic and abiotic stress. The so far proven and putative functions of the AOX play a role in the ability of organisms to adapt to different conditions, such as heavy metals accumulation, pathogenic infection, oxidative stress and lack of oxygen or nutrients.

    AOX is a member of the di-iron carboxylate protein family. Members of the di-iron carboxylate protein family are present in all kingdoms of life. They are considered to have ancient origin. It is believed that their sulfide-resistant and oxygen-reducing ability played a role in the survival of organisms during the transition between the anaerobic and the aerobic world. It is assumed that the AOX arose in eukaryotes through a primary endosymbiotic event, and this event made possible the development of mitochondria. Afterwords, vertical inheritance, and secondary and tertiary endosimbiotic events led to its spread among eukaryotes. It is assumed that bacteria obtained AOX by horizontal gene transfer from plants.

    AOX-catalyzed alternative respiration plays an important role in the operation of energy-producing and biosynthesizing system of microorganisms. In these cases, the regeneration of reduced cofactors is an essential condition, and therefore may be rate-limiting for biotechnological processes, including the citric acid production.

  • Study of alternative oxidase as possible molecular marker for phylogenetic analysis of the Botrytis cinerea
    127-132
    Views:
    143

    Botrytis cinerea (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is able to attack several economically important plants causing gray rot. Botrytis cinerea species complex includes two cryptic species (B. cinerea and B. pseudocinerea) that tolerate fungicides differently. On the basis of classical taxonomic markers, the two related species are very difficult to be distinguished; therefore, their separation is usually performed using molecular methods based on the time-consuming molecular analysis of several markers. Our goal was to find markers, which are suitable for the differentiation. Testing the nucleotide sequences of the alternative oxidase encoding gene, B. cinerea and B. pseudocinerea strains were clearly differentiated. Moreover, the analysis of the protein sequences of the enzyme with the maximum likelihood method reflected well the taxonomic relationships of the different fungi.

  • Isolation and identification of endophytic fungi connected to Grapevine Diseases, from the Tokaj wine region, Hungary
    61-66
    Views:
    224

    Grapevine Trunk Diseases (GTD) is one of the most important diseases in vineyards worldwide, which can be found in Hungarian vineyards as well. In Hungarian wine regions there is very little information about the occurrence of pathogens which cause GTD, in case of Tokaj wine region there is no knowledge about that, what kind of pathogens can be found in the vineyards.

    The objective of our research is to assess the situation and occurrence of GTD in Tokaj wine region in cooperation with local specialists, as well as identification of pathogens which were isolated from the diseased trunks by morphological and genetic basis.

    We were able to isolate endophytic fungi from all sampled grape trunk. The majority of them were determined as Diplodia seriata not only based on colony morphology, but also determined by rDNA sequences.

  • Q-PCR analysis of the resistance of Hungarian Botrytis cinerea isolates toward azoxystrobin
    41-44
    Views:
    120

    The genes being in the mitochondrial DNA primarily encode the enzymes of cellular respiration. Fungicides belonging to the family of quinol oxidase inhibitors (QoIs) play on important role in the protection against several plant diseases caused by fungi. These fungicides bind to the cytochrome bc1 complex so they block electron transport between cytochrome b and cytochrome c1. This way these fungicides inhibit the ATP synthesis consequently they inhibit the mitochondrial respiration. The QoI resistance has two mechanisms. One of them is the point mutation of the cytochrome b gene (CYTB), e.g. the substitution of a single glycine by alanine at position 143 results in high-resistance. The other is the cyanide-resistant alternative respiration sustained by the alternative oxidase.
    In a cell there are several mitochondria. The phenomenon when the genomes of all mitochondria in the cell are identical is called homoplazmy. If in the cell there is wild and mutant mitochondrial DNA this is called heteroplasmy. Whether the mutation in the mitochondria causes fenotypical diversity or does not depend on the dose, i.e. it depends on the percentage of the changed mitochondrials. During our work we investigated Botrytis cinerea single spore isolates which have been collected in 2008-2009 on different host plants. Our goal was to decide whether heteroplasmy influences the level of resistance. We managed to detect the change of the level of heteroplasmy, so the change the level of the resistance due to the treatment with fungicide.