Search

Published After
Published Before

Search Results

  • The influence of climatic conditions of the harvest year on the wheat quality
    23-25
    Views:
    194

    Technological potential of wheat bread depends on the variety, manner and type of fertilizer, irrigation conditions and climatic conditions in their absence. This study was done on two varieties of wheat grown in Bihor county in a place with identical fertilization conditions, for two different years: year 2014 can be characterized by a greater quantity of rainfall during the wheat vegetation period and the year 2015 can be characterized by a drought during the growing wheat on the subject of the study. In the study was examined whether climatic conditions have any influence on the technological potential of wheat, not taking into account the data on quantity produced per hectare in the years studied.

  • Evaluation of the use of leaf fertilizers and growth regulators in winter wheat: A review
    77-82
    Views:
    16

    Winter wheat is a leading cereal on a global scale, however, yields remain variable due to increasing weather extremes. This review synthesizes evidence (1971–2024) on the effects of foliar fertilizers and plant growth regulators/biostimulants on wheat growth, yield and quality. Across studies, appropriately timed foliar micronutrient applications (Fe, Mn, Cu, Zn, B, Mo) tend to enhance chlorophyll content, photosynthetic activity, and grain quality traits, while selected copper- and zinc-based products frequently increase grain yield and crude protein. Biostimulants—such as amino acids, humic/fulvic acids and seaweed extracts—generally improve stress tolerance (drought, cold) and may raise grain number and thousand-kernel weight. Plant growth regulators (e.g., lodging control agents) can reduce plant height, strengthen stems and improve stand stability, thereby contributing to yield security. Evidence magnitude varies with soil supply, cultivar, and phenophase-specific timing. We summarize practical windows of application, expected responses, and limitations, and highlight research gaps in standardizing doses and reporting effect sizes. Overall, foliar nutrition and growth regulation are promising tools to increase yield stability and quality under increasingly variable growing conditions.

  • Evaluation of the role of common vetch (Vicia sativa L.) green manure in crop rotations
    161-171
    Views:
    374

    Common vetch (Vicia sativa L.) is an annual legume, grown as green manure provide rapid soil cover, can increase soil moisture and organic matter content and reduce soil erosion during fall. During the fallow period, legumes grown as catch crops are known by releasing large amounts of mineral nitrogen (N) for the subsequent crop. By taking advantage of these benefits, it is possible to increase the yield of the next crop in an environmentally friendly and sustainable way. The goal of this study was to determine the value of common vetch as a green manure, considering its effect on soil conditions and the yield of next crops. We examined three different common vetch seed rate as a green manure in a crop rotation with triticale, oat and corn. Next to the green manured treatments, we used fertilized and bare fallow control treatment for comparison. In our study we evaluated the aboveground biomass weight of spring vetch green manure and its effect on the moisture content of the soil. We examined the green manure’s effect on the next crops plant height and yield. We found that the moisture content of the green manured plots was significantly higher during summer drought. On the green manured plots, 37.9% higher triticale yield, 50% higher oat yield and 44% higher corn yield were measured compared to the control plots. The insertion of spring vetch green manuring into crop rotations could be a good alternative to sustainable nutrient replenishment methods. It can be used to reduce the input needs of farming, reduce carbon footprint, contribute to the protection of soils and increase the organic matter content of the soil.

  • Rippl-Rónai’s color in the native parks: production and using of new, synthetic Wild sage color-mixture
    59-64
    Views:
    312

    The climate changes is becoming more damaging to ornamental plants. Besides ornamental species and varieties of plants on public spaces. It will be necessary to use domestic, well adaptable climate-tolerant plant species.

    One field of our growing ornamental plants researches from 2001 in the Centre of Agricultural Sciences of University of Debrecen, is studying drought patient, mainly Hungarian improved annual varieties, which are able to get acclimatized with the landscape. Moreover, we have in view to work out new, economical seedling production technologies. In the program, the excellent drought- and frost tolerant annuals and perennials belongs to the climate change tolerant plants. From the evaluated of species we want to create and spread the application. of the new types of ornamental horticulture culture.

  • The effect of plant density to the yield results and the yield components of maize hybrids
    89-93
    Views:
    224

    Maize is the crop that is produced on the second largest area in our country, in Hungary. It is planted on nearly 25% of the country’s growing area and it was produced on 1 090 439 hectares in 2016. Despite the continuous development of the biological basis and production
    technology, the growth of the yield results is not constant, its fluctuation is significant. It can be even up to 60%, because of the extremity of the years. The exploitation of the yield potential of modern hybrids is possible if we harmonize the effects of the ecological factors and properly applied instruments of agro technology and by these we ensure their interaction to reach a favorable outcome. The applied plant density is an important, well researched, but at industrial level a not enough utilized element of the maize production.
    The results of the extensive tests, done between 2009 and 2015, showed that the genotype, the year effect and the plant density are in strong correlation with each other determining the yield results. In the past seven years the examined genotypes reached the highest yield
    performance at the highest plant densities. The early hybrids (RM90–95, FAO 200–300) are capable of producing them at higher plant density, while in case of the mid and late maturity varieties the further increasing of the density after reaching the optimum level led to yield depression.
    According to our experimental results, the yield is in close positive correlation with the increase of the plant density. The effect of the growing season has great significance in forming the yield results and this determines the applicable plant density too.
    The yield of maize is determined by a resultant of components. The main component is the number of ears per plant and the amount of kernels per ear, which is calculated from the number of kernels on an ear and the weight of them. The number of the kernels on an ear is
    calculated from the number of rows on the cob multiplied by the number of seeds in one row on the cob. In dry years, at lower yield levels the yield decreases because of the shorter ears, while at the higher levels the number of kernels in a row and the thousand-kernel weight decreases,causing yield depression this way. From our examinations it turned out that the plant density reaction of a genotype is individual, every variety reaches its maximum kernel number per hectare – in other words the maximum yield - in an individual way.

  • Study on the cold tolerance of maize (Zea mays L.) inbred lines in Phytotron
    41-45
    Views:
    270

    Maize has come a long way from the tropics to the temperate zone. In the beginning, the spreading of maize was prevented by its sensitivity to cold. Improved cold tolerance at germination is one of the most important conditions for early sowing. The advantage of cold tolerant hybrids is that they can be sown earlier, allowing longer growing seasons and higher yields, due to the fact that the most sensitive period in terms of water requirements, flowering, takes place earlier, i.e. before the onset of summer drought and heat.

    In Martonvásár, continuous research is carried out to improve the cold tolerance of maize. In the present experiment, the cold tolerance of 30 genetically different maize inbred lines was investigated in a Phytotron climate chamber (PGV-36). The aim of our research is to identify cold tolerant lines that can be used as parental components to produce proper cold tolerant hybrids and/or as sources of starting materials for new cold tolerant inbred lines. After observing and evaluating changes in phenological traits under cold-test, the results of the cold-tolerance traits of interest have been used to highlight several inbred lines that could be good starting materials for further research on genetic selection for cold tolerance.

  • Challenges in the mangalitsa sector – present and future
    147-153
    Views:
    200

    The Hungarian mangalitza pig sector has experienced numerous structural changes in the past few decades. The increased demand in the foreign markets for the mangalitza pork, changes in the domestic consumer perceptions have increase the number of sows and breeders. After the European Union’s accession started a significant growth in the sector, which was due to the target programme from the year of 2005 for the keeping of animals representing high genetic value, as the breed is indigenous. From 2008 continuous decline can be observed. The main reason for the decrease was the drastic growth of feed costs because of the drought damage in 2007, and the global economic crisis. Since 2010, a further period of supports has been in place, it extands the willingness to keep mangalitza pigs and the number of sows continuously increasing. On the basis of the average farm size (58 sows/farm) in 2011 it can be stated, that after our EU’s accession the medium-sized farms became stronger. To evaluate the geographic concentration of the mangalitza livestock it was analysed the data of sow number among the years of 2000 and 2011. The geographic concentration of mangalitza stock has a medium value over each year under the survey period, except the years of 2004–2007, when the values of Herfindahl-Hirschman index (HHI) have low degrees. Due to the subvention period of indigenous breeds it was established more mangalitza farms in different parts of Hungary. Despite of the growth since 2000, numerous problems are in the segment. The aim of the study is to find out the sectoral problems, which are completed with the objectives tree and draw up the main activities to solve the problems. After estimating the SWOT-matrix according to the methodology of the strategic analysis and the discussions with the secretary of National Association of Mangalitza Breeders is prepared the sectoral problem- and objectives tree. The core problem of the mangalitza sector is that the origin of mangalitza products are not certified in the domestic markets. The reason of it is that the breeders don’t request the certificates of fattening pigs, so it can appear not real mangalitza product on the markets as mangalitza. To solve the problems it is drawn up different suggestions in the objectives tree. This analysis is an useful tool for the decision makers in the mangalitza sector to evolve strategic plans on behalf of the efficient cooperations among chain actors.

  • Technological development of sustainable maize production and its effect on yield stability
    379-388
    Views:
    321
    In 2015 and 2016, we examined the effect of NPK nutrients, sowing date and plant density on yield on typical meadow soil. The amount of precipitation was 282.0 mm in 2015 (January–September), 706.0 mm in 2016 and the 30-year averageis 445.8 mm.
    Agrotechnical factors:
    – Experiment a)
               5 Dow AgroSciences hybrid with three sowing dates and three plant densities
    – Experiment b)
    In 2015 eight, in 2016 ten hybrids with different genetic characteristics and growing seasons, with control (without fertilization), N80+PK and N160+PKtreatments, five plant densities (50–90 thousand) with 10 thousand plants difference between the different densities.
    In a drought year, we reached the higher yield in the earlier sowing date and with the lower lower plant density of 70 thousand plants ha-1-. The maximum yield, depending on the agrotechnical factors, was 10–12 t ha-1 in 2015, while in 2016 it was 14–16 t ha-1. Yield stability can be increased using hybrid-specific cultivation techniques.
  • Examination of extreme water-balance of maize cultivar in different crop rotation systems in 2007
    33-40
    Views:
    187

    We examined the change of the time of water balance of soil in long-term experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture). We found the smallest difference between the water deficit of not irrigated and irrigated plots in triculture. We concluded that irrigation impressed favourably on water balance of soil in both of crop-rotation systems. Water deficit has decreased significantly after irrigation
    in 25. May in mono- and triculture. Irrigation moderated only values of water deficit. Irrigation in 30. June not influenced water balance of soil in both of crop-rotation because of a big drought. Water deficit of soil lessed till harvestperiod because of rainy season at the end of August and in September.

  • Effect of the Cropping Year on the Quality of Winter Wheat
    89-95
    Views:
    381

    We examined the formation of quality parameters of winter wheat in a small plot variety comparison experiment from four cropping years. Our aim was to estimate the year effect on several quality parameters of winter wheat.
    We established in relation to the distribution of precipitation of the examined years that the years 1997 and 2000 were behind the thirty year average typical precipitation of this site both in the case of the whole vegetation period and the spring and summer. It was unfavourable for qualitative wheat production. 1998 and 1999 were good for cropping considering the amount and distribution of rainfall.
    Examining the formation of quality parameters we found that the baking value was maximum in 1997, with a moderate amount of normal distributed rainfall for the examined varieties. The mid-late maturating varieties showed better baking value in drought years than in wet years. In the case of the wet gluten content, we established higher values after a rainier spring-summer period. There is a conspicuous difference between the falling number of extensive and intensive varieties and the year had significant effect on the formation of values. We established with correlation analysis that both the precipitation of vegetation period and the maturing rainfall had considerable effect on the value of falling number. Examining the effect of fertilization on the formation of wet gluten content as a quadratic equation, we found that precipitation may both increase and maximalize the value of this quality parameter.

  • Technological development of sustainable maize production
    83-88
    Views:
    242

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.
    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly eight ha field. The size of one plot was 206 m2, this it was a half-industrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants per ha.
    In Hajdúszoboszló, in 2016 the amount of rainfall from January to October was 605 mm, which was more than the average of 30 years by 160 mm. The yield of hybrids without fertilization changed between 9.63–11.6 t ha-1 depending on the number of plants.
    The six tested hybrids is 10.65 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 12.24 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is 1.6 t ha-1, it is significant.
    Da Sonka hybrid is sensitive to weather, it is able to produce 6 t ha-1 additional yield in case of favourable condition. However, it has a low stress tolerance. The most stable yields were observed at Kamaria and Pioneer hybrids. The effect of vintage is also an important factor on the yield. In average, the yield of maize was 6.81 t ha-1 in 2015, which was a drought year and 11.86 t ha-1 in 2016 that was a favourable year.