Search

Published After
Published Before

Search Results

  • The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
    39-49
    Views:
    90

    Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
    The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
    In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
    In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

  • Relationship between the change of soil moisture content of different soil layers and maize yield
    19-25
    Views:
    151

    The development of chernozem soil water management and its relationship with maize yields was studied in a 30-years long-term field experiment with different crop-rotation systems (mono-, bi- and triculture), in three crop years with different natural precipitation: a drought (2007), a wet (2008) and a dry (2009 one. The relevant soil layer was divided to three sub-layers: (0–60 cm, 61–120 cm, 121–200 cm) in which the development of soil moisture content was investigated during the whole vegetation. From the results it can be stated that change of the water stock of the upper soil layer (0–60 cm) was the most intensive. Both the direct effect of natural precipitation and irrigation could be observed in the most obvious way in it. Yield result of maize and the highest water supply deficit values in the vegetation were compared in our work too. According to the results it was revealed that among the three studied crop rotation systems it was the monoculture, the success of production of which depends the most of water supply. The most favourable crop rotation system was the triculture from both the aspect of the yield of produced crops and the favourable soil properties too.

  • Circumstances of the establishment of the Eastern Main Channel, water utilisation problems and alternatives
    79-84
    Views:
    96

    After hundreds of years of drought in the area of Hortobágy and its surroundings brought up the idea of building a channel in Tiszántúl. It started with the idea of an irrigation canal but it ended up in a canal with high importance which can be used in many ways. Because of financial problems the necessary renovations cannot be achieved, and as a side effect the amount of silt in the water started to increase, water exploitation started to decrease, and the construction works started to get spoiled. Guided by the Water Directive the East Main Channel has become one of the most significant surface water base in Hungary. To use its water as drinking water brings up a few questions, like solving the pollution problems which problems have already occured. If we want the East Main Channel to be a solution for a long time, further steps and researches are needed to solve the problem of diverting the huge amount of precipitation of the last few years and miantaining the quality of drinking water.

  • Examination of drought stress of two genotype maize hybrids with different fertilization
    53-57
    Views:
    110

    In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

    Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

    The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

    In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

    There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.

  • Effect of cropping technologies on the yield of dry bean variety ’Diana’
    37-41
    Views:
    120

    An experiment on three dry bean varieties (Start, Hópehely, Diana), using different sowing-times, fertilizers and plant densities was performed on sandy soil in the University of Debrecen, Centre for Agricultural Sciences, Research Institute of Nyíregyháza in 2015. The aim of the experiment was to study which treatment gives the highest yield, and whether the different treatments result in significant differences in the yields. In this paper the dry bean yield at ‘Diana’ variety is analyzed.

    The treatments were done with three fertilizer doses and three plant densities at different sowing-times (April 24; May 8; May 18). As a result of the high temperature and the drought during the growth season, the yields we harvested were in low, which shows the ecological sensitivity of the plant we examined.

    We concluded that the poorest yield was harvested at the third sowing-time. There was no significant difference in the yields at the first and second sowing- time. Examining all the three fertilizer treatments we applied at the experiment, we achieved the highest yields in the control plots. It might be due to the weak efficiency of nitrogen fertilizer under the extremely dry conditions. The highest yield was harvested at the control treatments during the second sowing-time. Regarding the effect of the plant densities, the highest crop yield was achieved at the treatment using 400 000 germs ha-1, followed by 300 000 germs ha-1 and 200 000 germs ha-1.