Articles

Assessing animal species at risk for SARS-CoV-2 transmission: Bioinformatic analysis based on Angiotensin-Converting-Enzyme (ACE2) homology in edible and other animals

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Recalde-Soliz, V. L., & Idrovo-Espin , F. M. (2025). Assessing animal species at risk for SARS-CoV-2 transmission: Bioinformatic analysis based on Angiotensin-Converting-Enzyme (ACE2) homology in edible and other animals. Acta Agraria Debreceniensis, 1, 127-137. https://doi.org/10.34101/actaagrar/1/15207
Received 2024-11-28
Accepted 2025-04-01
Published 2025-06-08
Abstract

A novel coronavirus called SARS-CoV-2 was detected in December 2019, leading to the COVID-19 pandemic that began in Wuhan, China. This virus is classified as severe acute respiratory syndrome SARS-CoV-2 due to its significant similarities with the SARS-CoV virus. Initially, bats were recognized as the primary animal hosts, but later research indicated that other animals could also serve as reservoirs, posing health risks, particularly for those species consumed by humans. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) as its cellular receptor, utilizing the receptor-binding domain (RBD) of its spike protein, much like SARS-CoV does.

The study aimed to identify animals, particularly edible animals, that may be susceptible to infection by SARS-CoV-2. This was achieved through bioinformatics techniques, including alignment analysis of genomic sequences from selected animals, identity percentages comparison, and phylogenetic analysis based on the interaction between ACE2 and the receptor-binding domain (RBD) of SARS-CoV-2. This analysis identified rabbits, donkeys, alpacas, horses, wild boars, field rats, and monkeys as potentially susceptible edible animals. Additionally, primates were highlighted due to their close genetic resemblance to humans. Overall, 22 animals worldwide were identified as susceptible, marking them as possible reservoirs and hosts for the virus, emphasizing the need for vigilance around animals that humans may contact or consume.

References
  1. Alvarado-Ortiz, J.; Meneses Olmedo, L.; Idrovo-Espín, F. (2020): Origen probable y transmisión entre especies del SARS-CoV-2. infoANALÍT, 8(1). https://doi.org/10.26807/ia.v8i1.142
  2. Asociación Interprofesional de la Carne de Caza. (n.d.). Disfruta de la carne más noble. Carne de caza silvestre de España. Available online: https://www.carnesilvestreuropea.com/carne-silvestre-europea.html (September 13, 2021)
  3. Australian Government. Department of Agriculture, Water and the Environment. Red meat - Department of Agriculture. Red Meat. (n.d.). Available online: https://www.agriculture.gov.au/ag-farm-food/meat-wool-dairy/red-meat-livestock (September 13, 2021)
  4. Buonocore, M. et al. (2020): New putative animal reservoirs of SARS-COV-2 in Italian fauna: A bioinformatic approach, Heliyon, 6(11). doi:10.1016/j.heliyon.2020.e05430.
  5. Centers for Disease Control and Prevention. (2022, February 10). COVID-19 and animals. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html
  6. Chaves, A.; Montecino‐Latorre, D.; Alcázar, P.; Suzán, G. (2021): Wildlife rehabilitation centers as a potential source of transmission of SARS‐CoV‐2 into native wildlife of
  7. Latin America. Biotropica, 53(4). 987–993. https://doi.org/10.1111/btp.12965
  8. Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. (2020): Structure analysis of the receptor binding of 2019-nCoV. Biochem.
  9. Biophys. Res. Commun, 525(1), 135–140. https://doi.org/10.1016/j.bbrc.2020.02.071
  10. Damas, J. et al. (2020): Broad host range of SARS-COV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. PNAS, 117(36). 22311–22322. doi:10.1073/pnas.2010146117.
  11. Dhama, K.; Patel, S.K.; Sharun, K.; Pathak, M.; Tiwari, R.; Yatoo, M.I.; Malik, Y.S.; Sah, R.; Rabaan, A.A.; Panwar, P.K.; Singh, K.P.; Michalak, I.; Chaicumpa, W.; Martinez-Pulgarin, D.F.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. (2020): SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Med. Infect. Dis, 37, 101830. https://doi.org/10.1016/j.tmaid.2020.101830
  12. European Comission (n.d-a). Animales y productos animales. Available online: https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products_es (September 13, 2021)
  13. European Comission (n.d-b). Game meat. Food Safety. Available online: https://ec.europa.eu/food/animals/animals-products-trade-imports/game-meat_en (September 13, 2021)
  14. European Food Safety Authority (2020): Scientific opinion on the animal health and welfare aspects of the trade in live wild animals for human consumption. EFSA Journal, 18(11), 7822. https://www.efsa.europa.eu/en/efsajournal/pub/7822
  15. European Parliamentary Research Service (2020): The COVID-19 pandemic and its impact on the EU economy
  16. (EPRS Briefing No. 649409). European Parliament. https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/649409/EPRS_BRI%282020%29649409_EN.pdf
  17. Food and Agriculture Organization of the United Nations (2020): The COVID-19 challenge: Zoonotic diseases and
  18. wildlife (Joint CPW Statement). https://openknowledge.fao.org/server/api/core/bitstreams/3cc5ad00-91c6-420f-8d39-04abf532a342/content (April 13, 2025)
  19. Gallo-Cajiao, E. et al. (2023):‘Global governance for pandemic prevention and the Wildlife Trade’, The Lancet Planetary Health, 7(4). doi:10.1016/s2542-5196(23)00029-3
  20. Hayashi, T.; Abiko, K.; Mandai, M.; Yaegashi, N.; Konishi, I. (2020): Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals. Vet. Q., 40(1), 243–249. https://doi.org/10.1080/01652176.2020.1823522
  21. Imai, M.; Iwatsuki-Horimoto, K.; Hatta, M.; Loeber, S.; Halfmann, P.J.; Nakajima, N.; Watanabe, T.; Ujie, M.; Takahashi, K.; Ito, M.; Yamada, S.; Fan, S.; Chiba, S.; Kuroda, M.; Guan, L.; Takada, K.; Armbrust, T.; Balogh, A.; Furusawa, Y.; . . . Kawaoka, Y. (2020): Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure
  22. development. Proc. Natl. Acad. Sci., 202009799. https://doi.org/10.1073/pnas.2009799117
  23. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. (2018): MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol, 35, 1547–1549.
  24. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. (2020): Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  25. Longe, J.L. (2018): The Gale Encyclopedia of Environmental Health. 1st ed. Gale a Cengage Company.
  26. Luan, J.; Jin, X.; Lu, Y.; Zhang, L. (2020a): SARS‐CoV‐2 spike protein favors ACE2 from Bovidae and Cricetidae. J. Med. Virol., 92(9), 1649–1656. https://doi.org/10.1002/jmv.25817
  27. Luan, J.; Lu, Y.; Jin, X.; Zhang, L. (2020b): Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem.
  28. Biophys. Res. Commun, 526(1), 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047
  29. McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; Bartlett, S.L.; Sykes, J.M.; Zec, S.; Stokol, T.; Ingerman, K.; Delaney, M.A.; Fredrickson, R.; Ivančić, M.; Jenkins-Moore, M., . . . Diel, D.G. (2020): From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio, 11(5). https://doi.org/10.1128/mbio.02220-20
  30. Melin, A.D.; Janiak, M.C.; Marrone, F.; Arora, P.S.; Higham, J.P. (2020): Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol., 3(1). https://doi.org/10.1038/s42003-020-01370-w
  31. Mendoza-Revilla, J. (2012): Aportes de la filogenética a la investigación médica. Rev. Méd. Herediana, 23(2), 119. https://doi.org/10.20453/rmh.v23i2.1042
  32. Ministerio de Agricultura y Ganadería & Agrocalidad (2020): Manual de procedimientos para la regulación y control de origen de productos y subproductos cárnicos en estado primario destinados a consumo humano (N.o 1). Inocuidad de Alimentos.
  33. MARA. Ministry of Agriculture and Rural Affairs of the People’s Republic of China (2020): ‘农 业农村部关于《国家畜禽遗传资源目录》公开征求意见的通知’. Available at: http://www.moa.gov.cn/hd/zqyj/202004/t20200408_6341067.htm (September 13, 2021)
  34. Rosu, I. (2021): Resumen de los avances de la vacuna frente a SARS-CoV-2. Farmacéuticos Comunitarios, 13(1), 60–64. https://doi.org/10.33620/FC.2173-9218.(2021/Vol13).001.07
  35. Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; Grund, C.; Hoffmann, D.; Breithaupt, A.; Beer, M. (2020): SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. The Lancet Microbe, 1(5), e218–e225. https://doi.org/10.1016/s2666-5247(20)30089-6
  36. Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; Zhao, Y.; Liu, P.; Liang, L.; Cui, P.; Wang, J.; Zhang, X.; Guan, Y.; Tan, W.; Wu, G.; . . . Bu, Z. (2020): Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science, 368(6494), 1016–1020. https://doi.org/10.1126/science.abb7015
  37. United Nations Office on Drugs and Crime (2021, July 20). Doing nothing is not an option. United Nations Office on Drugs
  38. and Crime. https://www.unodc.org/unodc/en/environment-climate/webstories/safe-doing-nothing-is-not-an-option.html
  39. U.S. Department of Agriculture (2021, August 24). USDA announces proposed framework for advancing surveillance of SARS-CoV-2 and other emerging zoonotic diseases. U.S. Department of Agriculture. https://www.usda.gov/about-usda/news/press-releases/2021/08/24/usda-announces-proposed-framework-advancing-surveillance-sars-cov-2-and-other-emerging-zoonotic
  40. World Health Organization (2021): Coronavirus disease (COVID-19). World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (September 7, 2021)
  41. World Wildlife Fund (2020): COVID-19 and wildlife trade: Perspectives and proposed actions. World Wildlife Fund. https://www.worldwildlife.org/pages/covid-19-and-wildlife-trade-perspectives-and-proposed-actions
  42. Wu, L.; Chen, Q.; Liu, K.; Wang, J.; Han, P.; Zhang, Y.; Hu, Y.; Meng, Y.; Pan, X.; Qiao, C.; Tian, S.; Du, P.; Song, H.; Shi, W.; Qi, J.; Wang, H.W.; Yan, J.; Gao, G.F.; Wang, Q. (2020): Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2 Cell Discov, 6(1). https://doi.org/10.1038/s41421-020-00210-9
  43. Zhai, X.; Sun, J.; Yan, Z.; Zhang, J.; Zhao, J.; Zhao, Z.; Gao, Q.; He, W.T.; Veit, M.; Su, S. (2020): Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and
  44. Putative Intermediate Hosts. Virol. J., 94(15). https://doi.org/10.1128/jvi.00831-20