Search
Search Results
-
Review on the fatty acid profile and free fatty acid of common carp (Cyprinus carpio)
99-105Views:162Carp or ponty in Hungarian, is considered commercial freshwater fish, which is an adaptable species in both wild and cultured conditions. Carp has high nutritional value content, favorable taste, it is rich in protein, and low in saturated fat. The nutritional content in fish is composed of many chemical constituents and influenced by many factors. One of the components that its content may be different due to internal and external factors is fatty acids, which may vary depending on endogenous and exogenous factors. The endogenous or internal factors include the genetic, size, sexual maturity, and life cycle phase. While microclimate, water quality, quality of food or diet habit, and the amount of available food or starvation are considered as exogenous or environmental factors. Freshwater fish has the ability to convert essential fatty acid into long chain polyunsaturated fatty acid like AA, EPA, and DHA. Most results showed that palmitic acid and oleic acid were the dominant SFA and MUFA in carp both for wild and farmed carp in all seasons. The PUFA for wild carp was mainly dominated by DHA, while on farmed carp by LA. It confirmed that high LA content in farmed carp was related to the diet habit. The amount of lipid and FA were changed in line with the season. Even the statistical analysis showed no significant difference, but some studies showed a contrasting result. Moreover, most obtained results acknowledged that FA tends to decrease during the spawning period. The amount and composition of FA were affected by the total lipid content. The lipid must be broken down into simpler compounds such as FA or FFA for the metabolism of fish. The result of metabolism then transported into the utilising tissue and used as energy.
-
The economicalness of apple production in view of post harvest technology
125-131Views:205This study analyses how the level of postharvest technology’s development influences the economic efficiency of apple production with the help of a deterministic simulation model based on primary data gathering in producer undertakings. To accomplish our objectives and to support our hypotheses three processing plant types are included in the model: firstly apple production with no postharvest and prompt sale after the harvest, secondly parallel production and storage combined with an extended selling period and thirdly production and entire postharvest infrastructure (storage, sorting-ranking, packing) with the highest level of goods production and continuous sales. Based on our results it can be stated that the parallel production (plantation) and cold storage, so the second case is proved to be totally inefficient, considering that the establishment of a cold storage carries enormously high costs with resulting a relative low plus profit compared to the first type of processing plant. The reason for this is that this type is selling bulk goods without sorting-grading or packaging; storage itself – as a means of continuously servicing the market - is not covered properly by the consumers. Absolute efficiency ranking cannot be established regarding the other two processing plants: plantation without post-harvest infrastructure resulting lower NPV, but a higher IRR, DPP and PI as developing a plantation and a whole post-harvest infrastructure. Former processing plant type is favourable considering efficiency ratios describing capital adequacy, while the latter is in terms of income generating capacity.