Search
Search Results
-
Comparative analysis of Staphylococcus aureus strains by molecular microbiology methods
34-39Views:167Staphylococcus aureus is a very important pathogen for dairy farms and milk processing plants. Subclinical mastitis is often caused by this species, and it can contaminate bulk tank milk when milking cows are suffering from mastitis. Additionally, thermostable enterotoxins (SE) produced by some types of this bacterium can cause food poisoning.
The aim of our research was to examine the number of S. aureus in bulk tank milk in two dairy farms and the enterotoxin-producing ability, genetic relation (pulsotype) and antibiotic resistance of S. aureus strains from different sources (bulk tank milk, udder quarter milk and environment).
The results show that the mean number of S. aureus of bulk tank milk of two farms significantly differed (P<0.05). Fourteen isolates were selected for further molecular genetic studies (five isolates were from bulk tank milk and nine isolates were from udder quarter milk). S. aureus was not recovered from the environmental samples. Three of the fourteen isolates (21.4%) tested by multiplex PCR were positive for SE genes. Two isolates carried one gene (seb) and one isolate carried two genes (seg and sei). The fourteen strains were classified into three pulsotypes and two subtypes at 86% similarity level. Isolates from bulk tank milk (n=5), were divided into 2 pulsotypes (A, C) and one subtype (C1). The isolates from udder quarter milk (n=9) belonged to three different pulsotypes (A, B, C) and two subtypes (A1, C1). The distribution of pulsotypes in the present study revealed genetic relationship between S. aureus isolated from udder quarter milk and bulk tank milk. This could be explained by the fact that in farms with a high number of infected cows, these cows could represent the main source of contamination. The results of the antibiotic resistance investigations show, that all strains were susceptible to methicillin, cefoxitin, lincomycin, tetracycline, erythromycin and sulfamethoxazole/trimethoprim. Thirteen out of fourteen strains were resistant to penicillin (A and C pulsotypes, A1 and C1 subtypes) and just one isolate was susceptible (B pulsotype) to all antibiotics tested. -
The Carpathian lingonberry, raspberry and blackberry fruit extracts feature variable antimicrobial efficiency
27-32Views:359Wild berry is an excellent source of phytonutrients and/or bioactive compounds associated with significant therapeutic properties, so that they have been utilized in folk medicine and traditional nutrition throughout centuries. Multiple health-promoting effects, such as anti-inflammatory, anti-diabetic, anti-heart and coronary disease properties were attributed to such wild berries. It has also been proved that berries could feature antimicrobial effects that could be of a great importance for the prevention of food-feed poisoning and fighting back antibiotic resistance.
In this study, we investigated the antimicrobial properties of lingonberry (Vaccinium vitis-idaea), raspberry (Rubus idaeus) and blackberry (Rubus fruticosus) crude and ethanolic extracts prepared from fruits obtained from the spontaneous flora of Eastern Carpathian Mountains situated in Transylvania. The antimicrobial effect of crude and alcoholic extracts were assessed on four Gram-negative, five Gram-positive bacteria and one yeast species using the agar diffusion method. The studied bacteria can cause food or feed spoilage and foodborne diseases. Our results indicate the significant inhibitory effect of lingonberry extracts in the case of Gram-negative bacteria like Proteus vulgaris and Salmonella Hartford, while among Gram-positive bacteria the strongest inhibitory effect was observed for Bacillus species like B. cereus, B. subtilis, B. mojavensis and Micrococcus luteus. The raspberry and blackberry extracts featured milder inhibitory effects in the case of the studied bacteria species. Furthermore, we have studied the crude or ethanolic extract combinations associated antimicrobial effects synergistic/additive or antagonistic properties. Interestingly, the triple and double ethanolic extract mixes had stronger antimicrobial properties, whereas the crude extract mixes showed relatively reduced effects, if any. Our results indicate that the antimicrobial activity of studied fruit extracts obtained from wild berries can vary upon the applied extraction method and their combination formulae, so that all these considerations must be taken into account when such fruit extracts are considered for foodstuff development.
-
The effect of breed and stage of lactation on the microbiological status of raw milk
37-45Views:340The microbiological quality of the milk is important not only for food safety, but it can also influence the quality of dairy products. The microbiological status of raw cow milk can be influenced by many factors. Our aim was to determine whether there was a difference between the microbiological quality of milk of two different cow breeds (Holstein Friesian and Jersey) kept and milked in the same conditions, and how the microbiological quality of the raw cow milk changed during lactation (beginning, mid, and end). Samples were taken and analysed in July, August and September in 2018 from two dairy farms in Hajdú-Bihar county. During the conducted studies, the total plate count (TPC), the coliform count, the Staphylococcus aureus count and the coagulase-negative Staphylococcus (CNS) count of raw milk samples were determined.
There was no significant difference (P>0.05) between the milk of the Holstein Friesian and Jersey breeds in the case of TPC. However, the mean coliform count of milk samples taken from Holstein Friesian cows was significantly lower (P<0.05) than the mean coliform count of milk samples taken from Jersey cows. S. aureus was detected in one of the twelve milk samples taken from Holstein Friesian cows, and in two of the eleven milk samples taken from Jersey cows. CNS was found in larger amount in milk samples taken from Holstein Friesian cows, and the difference was significant (P<0.05). Both TPC and CNS count were significantly higher (P<0.05) in individual milk samples taken at the end stage of lactation, than in samples taken in the earlier stages of lactation from Farm “A”. However, in the case of Farm “B”, there was no significant difference (P>0.05) in colony counts at different stages of lactation. S. aureus was only present in milk samples that collected from cows, which were at the beginning and middle stages of lactation. Testimg the hemolysin production ability of S. aureus strains isolated from the raw milk samples, only weak hemolysis was observed on blood agar. In case of antibiotic resistance testing, it was found that all strains were susceptible to cefoxitin, chloramphenicol, clindamycin, erythromycin, gentamicin, penicillin G, tetracycline and trimethoprim/sulphamethoxazole.
Based on the results of our studies, staphylococci were detected in a higher amount in the milk of Holstein Friesian cows, and coliform bacteria were detected in a higher number in the milk of Jersey cows. Summing up the results of the milk samples taken from the different stages of lactation in one of the farms, it can be concluded that higher TPC and CNS count could be detected at the end stage of lactation than in the samples taken from the earlier stages of lactation. The fact that at the end of lactation the microorganisms could be detected in a higher colony count may be related to the fact that teats could be damaged during lactation by the milking machine, which increased the chance of imvading the microorganisms into the udder.