Search
Search Results
-
The effect of crop year and agrotechnical factors on the yield of various maturity groups of Limagrain maize hybirds
19-23Views:156The Limagrain maize hybrids in different maturity groups were examined at the Látókép Experimental Station of the Centre of Agricultural Sciences and Engineering, University of Debrecen on a calcareous chernozem soil with loam texture, between 2001 and 2007 in a multifactorial long-term field trial. Doses of fertilizers: 1 N:0.75 P2O5:0.88 K2O fixed proportion of NPK doses. The basic dose of nitrogen is 30 kg ha-1. The application of fertilization was 1, 2, 3, 4, and 5 times more than the basic dose, beside of untreated control. The long-term field trial is performed in none irrigated and in irrigated version.
The goal of the study was to analyze the effect of precipitation (environment factor) in one hand, and to evaluate the effect of fertilization and irrigation (agrotechnical factors) on the yield of maize hybrids in different maturity groups in the other hand. At the same time I studied the effect of interaction of different factors on the yield of maize.Analysis the yield of Limagrain hybrids revealed: the years considerably affected the level of the yield. In dry years the yield was 1.351 t ha-1 less, than in rainy years. As the effect of fertilization the yield increased, the statistically proved biggest increment was at level of 90 kg N ha-1. Evaluating the maturity groups, FAO 300 hybrids reached higher level of yield.
In non irrigated conditions in the average of the seven years 60 kg N ha-1 was sufficient to reach the maximum yield. The efficiency of fertilization on yield in irrigated version increased, 120 kg N ha-1 assured the reliable level of yield.
Without irrigation in comparison to the results of FAO 200 group, with the growth of FAO numbers the yield is increasing in all cases. The most significant increase was at FAO 300 (3.562 t ha-1). With irrigation the greatest difference in yield was in FAO 400 (+2.720 t ha-1) compared to FAO 200. -
Methane emission from Matsuo rice paddy field in light of different fertilizers, costs, profit and carbon credit
9-13Views:181Nowadays global warming is a major issue to our environment. This issue is generated by the modern human activities like industry and intensive agriculture. This research is about methane emission from rice paddy fields. The aim of the study is to lower the methane emission from the field with the help of using different type of fertilizers, whilst we keep in focus the efficient economic operation. The main experimental field is Matsuo paddy field, (Matsuo town, Sanbu city, Chiba prefecture) which is analyzed by the Chiba University’s soil science laboratory, they provided the data for this study. During the study three type of fertilizer was analyzed which are all organic and the control was a regular chemical fertilizer. For all fertilizers the cost and income of the production were calculated and the profit was weighted with the methane emission what a specific fertilizer produced during the cultivation. In the future if the organic fertilizers are in focus than it is necessary to find a new material what can be competitive with the chemical fertilizers in focus of GHG emission or find an alternative way of the usage of methane in biogas production.
-
Study of plant production modells with different intensity in winter wheat production
51-60Views:127The effects of crop rotation, nutrient supply and plant protection technologies were examined on the yield of Mv PÁLMA winter wheat variety and on the most important diseases of ear and leaf. Our experiments were carried out on chernozem soil in the Hajdúság in 2006 and 2007, and three plant protection technologies (extensive, average, intensive) and three irrigation variations (without irrigation, irrigated with 50 mm, irrigated with
100 mm) were applied in different crop rotation systems.
In the triculture crop rotation a higher rate of infection was observed than in the biculture crop rotation, because the vegetative growth was more expressed after pea and these microclimatic factors were favourable for the development of pathogens.
In the triculture crop rotation (pea – wheat – maize) the powdery mildew, DTR and leaf rust of wheat were present in both examined years (powdery mildew 5-15%, DTR 14-42%, leaf rust 8-37% in cropyear 2005/2006, powdery mildew 12-32%, DTR 9-29%, leaf rust 8-26% in cropyear 2006/2007). Fusaria could be observed in 2006 (depending on the plant protection technologies and nutrient supply in the biculture 7-27% and in the
triculture 5-19%). With higher amounts of fertilizers the rate of infection increased and reached its maximum at the highest dose of nutrient supply (N200 +PK).
We observed the highest rate of infection by ear and leaf diseases in the case of the extensive technology, while this rate could be considerably reduced by the application of the intensive technology.
Both in 2006 and 2007, yields were the highest at the N100-200+PK levels in the triculture after pea (6028-7939 kg ha-1 in cropyear 2006, 6578-8690 kg ha-1 in cropyear 2007 depending on plant protection technologies), and at the N150-200+PK levels in the biculture after maize (6096-7653 kg ha-1 in cropyear 2006, 4974-8123 kg ha-1 in cropyear 2007 depending on the plant protection technologies). The highest yield maximums were
reached when pea was the forecrop. The yields on the experimental plots of the intensive plant protection technology was 224-2198 kg ha-1 higher (depending on the forecrop) compared to the plots where the extensive technology was used.
The highest yield without irrigation was at the N150+PK both in biculture and triculture crop rotation. Among the irrigated variations Ö2 and Ö3 at N200+PK fertilisation resulted in the highest yield in the biculture crop rotation, while the N100+PK level in triculture system. In the biculture crop rotation the extra yield was 14-51% higher (575-1225 kg ha-1 depending on plant protection technology) when 50 mm water was irrigated, and
15-54% higher (778-2480 kg ha-1) if 100 mm irrigation was applied comparing to the non-irrigated versions. The yield was 7-17% higher (560-1086 kg ha-1) in the Ö2 irrigation variation, and 8-23% (691-1446 kg ha-1) higher in the Ö3 irrigation variation compared to Ö1 irrigation variation (non-irrigated).
A correlation analysis was made to reveal the connection between the yield, the amount of fertilizers, the rate of infection, the plant protection technologies and the forecrops. Strong positive correlation (0.846) was found between year and fusaria infection. Strong positive correlation was observed between fertilization and powdery mildew infection (0.525), fertilization and DTR (0.528), fertilization and yield quantity (0.683). Lower
correlation was found between fertilization and leaf rust infection (0.409), and forecrop and yield (0.472), recpectively. Negative correlation was calcutated between plant protection technologies and DTR (-0.611), and plant protection technologies and leaf rust (-0.649). -
The scientific background of competitive maize production
33-46Views:327The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors.
Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment.
Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease.
The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.
-
Virtual Appliances for geospatial data management and processing in the Integrated Land Management System (ILMS)
59-62Views:112Virtualization is increasingly taking on a key role in various system architectures which follow new platform concepts like Software as a Service (SaaS). This trend addresses more instant and short-term environments and comes with new methods and strategies for the distribution of mainly complex application stacks not only in large IT infrastructures. The paper presents how a so called Virtual Appliance can be set up in order to operate in virtual server environments using hypervisor software like Oracle Virtual-Box. Using the example of two server-side components within the Integrated Land Management System (ILMS), it will be shown that the use of state-of-the-art methods, standardized tools and interfaces on servers enables different aspects of environmental system management, analysis and planning.
-
Usage of different remote sensing data in land use and vegetation monitoring
7-12Views:153The use of remote sensing in forest management and agriculture is becoming more prominent. The rapid development of technology allowed the emergence of database suitable for precision application in addition to the previously used low-resolution and low data content images. The high resolution, hyperspectral images are not only suitable for separating the different land use categories and vegetation types but also for examining the soil characteristics and biophysical features of plants (Blackburn and Steel, 1999; Condit, 1970). We processed a multispectral satellite image (Landsat 7 ETM+) and a hypespectral areal image (DAIS 7915) about a farm on the plains and evaluated the different image classification methods. During our examinations, we examined the geometrical and radiometrical characteristics of images first, then assigning the training areas, we determined the spectral characteristics of land use categories. We performed a multispectral analysis for checking land use, where we compared controlled and uncontrolled classification systems to check their reliability. We used areal and spectral reductions to make the classifications more accurate and to reduce the length of calculations.
-
Correlations of the growth indexes and yield of winter wheat in a long-term experiment
139-144Views:152The experiments were carried out at the Látókép experimental station of the Centre for Agricultural Sciences of University of Debrecen on chernozem soil in a long term winter wheat experiment. As forecrop rotation, we set up two models: a biculture (wheat and corn) and a triculture (pea, wheat and corn). We applied three levels of nutrients during the fertilization process (control, N50P35K40 and N150P105K120). The third variable studied was irrigation in case of which we tested non-irrigated variables (Ö1) and irrigation variables complemented up to the optimum (Ö3).
The effect of pre-crops, irrigation and nutrient-supply levels on some growth-parameters (LAI, LAD), weight of dry matter, just as SPADvalues and yield amounts of winter wheat has been investigated in this experiment. We tried to find out the extent of relationship between the different parameters, and we used the correlation analysis. The correlation analyses have confirmed that all of the investigated parameters had almost in all cases close positive correlation to the yield amount. These results have confirmed that the leaf area, the leaf duration, the SPADvalues, the fertilization and the forecrop have altogether resulted in the production of maximum grain yields.