Articles

A review on fish in vitro digestion studies

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Martin-Culma, N. Y., Antal, O. ., Takács, K. ., & Bársony, P. (2025). A review on fish in vitro digestion studies. Acta Agraria Debreceniensis, 2, 55-63. https://doi.org/10.34101/actaagrar/2/16085
Received 2025-08-22
Accepted 2025-11-10
Published 2025-12-02
Abstract

 (1) Background: In vitro experiments in fish have been developed to search for dietary substitutes of fish meal in aquafeeds by measuring the digestibility of various feedstuffs by simply simulating the conditions of the stomach or portions of the digestive tract. In vitro digestion studies involving mainly commercial fish species have been conducted to determine the digestibility of conventional and alternative ingredients in fish diets using diverse digestion models. However, there remains a significant knowledge gap, particularly regarding the enzyme functionality, digestion mechanisms in many fish species, and the factors influencing enzymatic activity. This review article is focused on the importance of the use of different enzyme sources in the in vitro digestion model to predict protein hydrolysis.;(2) Methods: For this review, a comprehensive analysis of articles was conducted to gain insights into diverse enzyme interactions and feed evaluation assessments, from the nutritional science and biotechnology sector.; (3) Results: A total of 36 peer-review papers, which include original, and review articles were selected.; (4) Conclusions: In vitro digestion studies offer a valuable tool for evaluating the digestibility of conventional and alternative feed ingredients, helping to identify sustainable dietary substitutes for fish meal while reducing dependence on live animal trials.

References
  1. Antal, O.; Némethné, E.; Takács, K. (2020): In vitro humán emésztési modellek alkalmazása a táplálkozástudomány területén. Élelmiszervizsgálati Közlemények, 66, 31–57.
  2. Arndt, C.; Sommer, U.; Ueberschär, B. (2015): A comparative in vitro test on the digestibility of live prey for fish larvae under specific consideration of trypsin. Aquaculture, 446, 12–16. https://doi.org/10.1016/j.aquaculture.2015.03.033
  3. Bell, J.G.; McGhee, F.; Campbell, P.J.; Sargent, J.R. (2003): Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquaculture, 218, 515–528. https://doi.org/10.1016/S0044-8486(02)00462-3
  4. Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O. et al. (2018): Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr., 58, 2239–2261. https://doi.org/10.1080/10408398.2017.1315362
  5. Brander, K.M. (2007): Global fish production and climate change. Proc. Natl. Acad. Sci., 104, 19709–19714. https://doi.org/10.1073/pnas.0702059104
  6. Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Balance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. et al. (2019): INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc., 14, 991–1014. https://doi.org/10.1038/s41596-018-0119-1
  7. Bryan, D.D.S.L.; Classen, H.L. (2020): In vitro methods of assessing protein quality for poultry. Animals, 10, 551. https://doi.org/10.3390/ani10040551
  8. Castillo-Lopez, E.; Espinoza-Villegas, R.E.; Viana, M.T. (2016): In vitro digestion comparison from fish and poultry by-product meals from simulated digestive process at different times of the Pacific Bluefin tuna, Thunnus orientalis. Aquaculture, 458, 187–194. https://doi.org/10.1016/j.aquaculture.2016.03.011
  9. Dong, F.M.; Hardy, R.W.; Haard, N.F.; Barrows, F.T.; Rasco, B.A.; Fairgrieve, W.T.; Forster, I.P. (1993): Chemical composition and protein digestibility of poultry by-product meals for salmonid diets. Aquaculture, 116, 149–158. https://doi.org/10.1016/0044-8486(93)90005-J
  10. Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J. et al. (2019): Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr., 59, 1546–1562. https://doi.org/10.1080/10408398.2017.1421900
  11. FAO (2021): FAOSTAT. Rome: FAO. https://lccn.loc.gov/2005617801
  12. Márquez, L.; Øverland, M.; Martínez-Llorens, S.; Morken, T.; Moyano, F.J. (2013): Use of a gastrointestinal model to assess potential amino acid bioavailability in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture, 384, 46–55. https://doi.org/10.1016/j.aquaculture.2012.12.008
  13. Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D. et al. (2014): A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct., 5, 1113–1124. https://doi.org/10.1039/C3FO60702J
  14. Martínez-Antequera, F.P.; López-Ruiz, R.; Martos-Sitcha, J.A.; Mancera, J.M.; Moyano, F.J. (2023): Assessing differences in the bioaccessibility of phenolics present in two wine by-products using an in vitro model of fish digestion. Front. Vet. Sci., 10, 1151045. https://doi.org/10.3389/fvets.2023.1151045
  15. Morales, G.A.; Moyano, F.J.; Márquez, L. (2011): In vitro assessment of the effects of phytate and phytase on nitrogen and phosphorus bioaccessibility within fish digestive tract. Anim. Feed Sci. Technol., 170, 209–221. https://doi.org/10.1016/j.anifeedsci.2011.08.011
  16. Morales, G.A.; de Rodrigañez, M.S.; Márquez, L.; Díaz, M.; Moyano, F.J. (2013): Solubilisation of protein fractions induced by Escherichia coli phytase and its effects on in vitro fish digestion of plant proteins. Anim. Feed Sci. Technol., 181, 54–64. https://doi.org/10.1016/j.anifeedsci.2013.02.004
  17. Moyano, F.J.; de Rodrigañez, M.A.; Díaz, M.; Tacon, A.G.J. (2015): Application of in vitro digestibility methods in aquaculture: constraints and perspectives. Rev. Aquac., 7, 223–242. https://doi.org/10.1111/raq.12065
  18. Nguyen, T.N.; Davis, D.A.; Saoud, I.P. (2009): Evaluation of alternative protein sources to replace fish meal in practical diets for juvenile tilapia, Oreochromis spp. J. World Aquac. Soc., 40, 113–121. https://doi.org/10.1111/j.1749-7345.2008.00230.x
  19. Nogueira, W.V.; Moyano, F.J.; García, M.J.A.; Tesser, M.B.; Buffon, J.G. (2022): Preliminary assessment of bioaccessibility of aflatoxin B1 in fish. Aquac. Int., 30, 1315–1325. https://doi.org/10.1007/s10499-022-00860-4
  20. Oldham, D.; Dudefoi, W.; Minghetti, M. (2023): Development of an in vitro digestion system to study the bioavailability and bioreactivity of zinc sulfate and Zn-bioplex in fish using the RTgutGC cell line. ACS Food Sci. Technol., 3, 141–149. https://doi.org/10.1021/acsfoodscitech.2c00307
  21. Randazzo, B.; Zarantoniello, M.; Cardinaletti, G.; Cerri, R.; Giorgini, E.; Belloni, A.; Contò, M.; Tibaldi, E.; Olivotto, I. (2021): Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: a multidisciplinary study on fish gut status. Animals, 11, 677. https://doi.org/10.3390/ani11030677
  22. Rodríguez-Rodríguez, M.; Sánchez-Muros, M.J.; Vargas-García, M.D.C.; Varga, A.T.; Fabrikov, D.; Barroso, F.G. (2023): Evaluation of in vitro protein hydrolysis in seven insects approved by the EU for use as a protein alternative in aquaculture. Animals, 14(1), 96. https://doi.org/10.3390/ani14010096
  23. Román-Gavilanes, A.I.; Martínez-Montaño, E.; Viana, M.T. (2015): Comparative characterization of enzymatic digestion from fish and soybean meal from simulated digestive process of Pacific Bluefin Tuna, Thunnus orientalis. J. World Aquac. Soc., 46, 409–420. https://doi.org/10.1111/jwas.12204
  24. Rust, M.B. (2002): Nutritional Physiology. In: Fish Nutrition. Academic Press, San Diego, London, 367–417. https://doi.org/10.1016/B978-012319652-1/50008-2
  25. Sánchez-Muros, M.; De Haro, C.; Sanz, A.; Trenzado, C.E.; Villareces, S.; Barroso, F.G. (2016): Nutritional evaluation of Tenebrio molitor meal as fish meal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr., 22, 943–955. https://doi.org/10.1111/anu.12313
  26. Silva, M.S.; Prabhu, P.A.J.; Ørnsrud, R.; Sele, V.; Kröckel, S.; Sloth, J.J.; Amlund, H. (2020): In vitro digestion method to evaluate solubility of dietary zinc, selenium and manganese in salmonid diets. J. Trace Elem. Med. Biol., 57, 126418. https://doi.org/10.1016/j.jtemb.2019.126418
  27. Takakuwa, F.; Hayashi, S.; Yamada, S.; Biswas, A.; Tanaka, H. (2022a): Effect of additional heating of fish meal on in vitro protein digestibility and growth performance of white trevally (Pseudocaranx dentex) juveniles. Aquac. Res., 53, 1254–1267. https://doi.org/10.1111/are.15659
  28. Takakuwa, F.; Suzuri, K.; Mikotaka, H.; Yamada, S.; Biswas, A.; Tanaka, H. (2022b): Low- and high-temperature processed potato protein concentrates as alternatives to fish meal in greater amberjack Seriola dumerili diets. Fish. Sci., 88, 581–592. https://doi.org/10.1007/s12562-022-01616-y
  29. Tibbetts, S.M.; Patelakis, S.J.J. (2022): Apparent digestibility coefficients (ADCs) of intact-cell marine microalgae meal (Pavlova sp. 459) for juvenile Atlantic salmon (Salmo salar L.). Aquaculture, 546, 737236. https://doi.org/10.1016/j.aquaculture.2021.737236
  30. Tibbetts, S.M.; Patelakis, S.J.J.; Whitney-Lalonde, C.G.; Garrison, L.L.; Wall, C.L.; MacQuarrie, S.P. (2020): Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds. J. Appl. Phycol., 32, 299–318. https://doi.org/10.1007/s10811-019-01942-2
  31. Toledo-Solís, F.J.; Martínez-García, R.; Díaz, M.; Peña, E.S.; Di Yorio, M.P.; Vissio, P.G.; Álvarez-González, C.A.; Saenz, M. (2020): Potential bioavailability of protein and lipids in feed ingredients for the three-spot cichlid Amphilophus trimaculatus: An in vitro assessment. Aquac. Res., 51, 2913–2925. https://doi.org/10.1111/are.14630
  32. Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. (2006): Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252, 85–91. https://doi.org/10.1016/j.aquaculture.2005.11.052
  33. Wang, R.; Mohammadi, M.; Mahboubi, A.; Taherzadeh, M.J. (2021): In vitro digestion models: a critical review for human and fish and a protocol for in vitro digestion in fish. Bioeng., 12, 3040–3064. https://doi.org/10.1080/21655979.2021.1940769
  34. Watanabe, T.; Tanemura, N.; Sugiura, S. (2016): Effects of in vitro enzymatic digestion of rapeseed meal, soybean meal, macrophyte meal, and algal meal on in vivo digestibilities of protein and minerals evaluated using common carp Cyprinus carpio. Aquac. Sci., 64, 215–222.
  35. Yasumaru, F.; Lemos, D. (2014): Species-specific in vitro protein digestion (pH-stat) for fish: method development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rachycentron canadum), and Nile tilapia (Oreochromis niloticus). Aquaculture, 426, 74–84. https://doi.org/10.1016/j.aquaculture.2014.01.012
  36. Yu, H.; Chen, Y.; Zhu, J. (2022): Osteogenic activities of four calcium-chelating microalgae peptides. J. Sci. Food Agric., 102, 6643–6649. https://doi.org/10.1002/jsfa.12031