Articles

Phytoplankton diversity and their relationship with water quality parameters in the middle basin of Ogun River, Abeokuta, Southwest Nigeria

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Amoda, O., Abiodun, O., & Adewale, C. (2025). Phytoplankton diversity and their relationship with water quality parameters in the middle basin of Ogun River, Abeokuta, Southwest Nigeria. Acta Agraria Debreceniensis, 2, 5-13. https://doi.org/10.34101/actaagrar/2/15465
Received 2025-02-04
Accepted 2025-09-11
Published 2025-12-02
Abstract

Phytoplankton are crucial bioindicators for assessing freshwater ecosystem health. This study investigates the diversity and distribution of phytoplankton and key water quality parameters in the Ogun River. Monthly samples were collected from three sites along the river between February and August 2024. Phytoplankton samples were preserved with 4% formalin and analyzed microscopically, while water quality parameters, including temperature, pH, dissolved oxygen, conductivity, transparency, total dissolved solids, nitrate, phosphate, alkalinity, and hardness, were measured using standard methods. Results showed temperature ranged from 27.3–31.9 °C, pH from 6.7–9.4, dissolved oxygen from 4.3–7.2 mgL-1, conductivity from 10.8–20.9 µS/cm, transparency from 0.27–1 m, and other parameters within specified ranges. Sixteen phytoplankton species from 10 families were identified, with the Bacillariophyceae family being the most dominant, representing 7 species. Lyngbya spp. was the most abundant species, followed by Pediastrum simplex. Species richness was 12 species at Site A, 13 at Site B, and 14 at Site C. Dominance values were 0.13, 0.11, and 0.12, respectively. Simpson’s diversity index ranged from 0.87 to 0.89, and the Shannon-Weiner index was 2.24 at Site A, 2.38 at Site B, and 2.35 at Site C. One-way ANOVA tests showed no statistically significant differences in diversity indices among the three sampling sites (p > 0.05), indicating relatively consistent phytoplankton diversity across the study area. These findings highlight the importance of integrated biological and physicochemical monitoring for effective water management and ecosystem conservation in the Ogun River.

References
  1. Agarin, O.J.; Davies, I.C.; Akankali, J.A. (2020): Effect of Water Quality on the Distribution of Phytoplankton in Tin Can Island Creek of the Lagos Lagoon, Nigeria. International Journal of Agriculture and Earth Science, 6(1), 59–76.
  2. Ajagbe, S.O.; Odulate, D.; Ojubolamo, M.T.; Alao, D.O.; Oyekan, O.O.; Okeke, U.E. (2019): Abundance, distribution, and species diversity of phytoplankton in Ikere-Gorge, Iseyin, Oyo State, Nigeria. African Journal of Agriculture Technology and Environment, 8(2):138–150.
  3. Anyanwu, J.C.; Nwafor, D.M.; Ejiogu, C.C.; Iwuji, M.C.; Uyo, C. N.; Uche, C.C. ... & Nwobu, E.A. (2023): Assessment of physicochemical conditions and phytoplankton diversity of Anambra River in Anambra State, Nigeria. International Journal of Multidisciplinary Research and Growth Evaluation, 4(3), 677–683.
  4. Avik, K.C.; Ruma, P. (2014): An introduction to phytoplanktons: Diversity and Ecology, 1, 5–10. https://link.springer.com/book/10.1007/978-81-322-1838-8.
  5. Bakaeva, E.N.; Al-Ghizzi, M.A.B.; Aljanabi, Z. (2021): Using of index Biological Integrity of Phytoplankton (P-IBI) in the assessment of water quality in Don River section. Baghdad Science Journal, 18(1), 0087-0087. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/download/5280/3383.
  6. Bellinger, E.; Sigee, D.C. (2010): Freshwater algae: identification and use as bioindicators. John Wiley and Sons Ltd, Oxford. https://doi.org/10.1111/j.1529-8817.2011.00973.x.
  7. Berezina, N.A.; Tiunov, A.V.; Petukhov, V.A.; Gubelit, Y.I. (2022): Benthic invertebrates abundance and trophic links in the coastal zone during Cladophora blooms. Diversity, 14(12), 1053. https://doi.org/10.3390/d14121053.
  8. Fernández-González, C.; Tarran, G.A.; Schuback, N.; Woodward, E.M.S.; Arístegui, J.; Marañón, E. (2022): Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Communications Biology, 5(1), 1035. https://doi.org/10.1038/s42003-022-03971-z.
  9. Gabor, B.; Andra, A.; Nico, S.; Robert, P. (2020): Freshwater phytoplankton diversity: models, drivers, and implications for ecosystem properties. Hydrobiologia, 1–10. https://doi.org/10.1007/s10750-020-04332-9.
  10. Grabowska, M.; Glińska-Lewczuk, K.; Obolewski, K.; Burandt, P.; Kobus, S.; Dunalska, J.; Kujawa, R.; Goździejewska, A.; Skrzypczak, A. (2014): Effects of hydrological and physicochemical factors on phytoplankton communities in floodplain lakes. Polish Journal of Environmental Studies, 23(3), 713–725. https://www.pjoes.com/Effects-of-Hydrological-and-Physicochemical-r-nFactors-on-Phytoplankton-Communities,89243,0,2.html.
  11. Joseph, J. (2017): Diversity and distribution of phytoplankton in an artificial pond. International Journal of Advanced Research in Biological Sciences, 4(6), 1–5. https://doi.org/10.22192/ijarbs.2017.04.05.013.
  12. Kefas, M.; Jidauna, S.B.; Jibrin, M.T.; Labaran, N.D.; et al. (2025): Phytoplankton Abundance, Distribution and Diversity in Upper River Benue, Adamawa State, Nigeria. J Aquac Fisheries 9: 0104. DOI: 10.24966/AAF-5523/1000104.
  13. Lomeo, D.; Simis, S.G.; Liu, X.; Selmes, N.; Warren, M.A.; Jungblut, A.D.; Tebbs, E.J. (2025): A novel cyanobacteria occurrence index derived from optical water types in a tropical lake. ISPRS Journal of Photogrammetry and Remote Sensing, 223, 58–77. https://doi.org/10.1016/j.isprsjprs.2025.03.006.
  14. Mânica, A.N.; de Lima Isaac, R. (2023): Seasonal dynamics and diversity of cyanobacteria in a eutrophied Urban River in Brazil. Water Supply, 23(9), 3868–3880. https://doi.org/10.2166/ws.2023.216.
  15. Ni, Z.; Wang, S.; Cai, J.; Li, H.; Jenkins, A.; Maberly, S.C.; May, L. (2019): The potential role of sediment organic phosphorus in algal growth in a low-nutrient lake. Environmental Pollution, 255, 113235. https://doi.org/10.1016/j.envpol.2019.113235.
  16. Odulate, D.O.; Omoniyi, I.T.; Alegbeleye, W.O.; George, F.; Dimowo, B. (2017): Water quality in relation to plankton abundance and diversity in River Ogun, Abeokuta, Southwestern Nigeria. International Journal of Environmental Health Engineering. 6(1), 1–8. DOI: 10.4103/ijehe.ijehe_31_13.
  17. Offem, B.O.; Ayotunde, E.O.; Ikpi, G.U.; Ochang, S.N.; Ada, F.B. (2011): Influence of seasons on water quality, abundance of fish and plankton species of Ikwori Lake, South-Eastern Nigeria. Fisheries and Aquaculture Journal, 13, 1–18. https://www.longdom.org/open-access/influence-of-seasons-on-water-quality-abundance-of-fish-and-plankton-species-of-ikwori-lake-southeastern-nigeria-43050.html.
  18. Ogamba, E.N.; Charles, E.E.; Izah, S.C. (2019): Phytoplankton community of Taylor Creek in the Niger Delta using diversity indices. Journal of Plant and Animal Ecology, 1(3), 1–12. https://oap-journals.com/jpae/article/1083.
  19. Otsuka, A.; Noriega, C.; Feitosa, F.; Borges, G.; Montes, M.F.; Araujo, M.; da Gloria Silva-Cunha, M. (2022): Characterization of microphytoplankton associations on the Amazon continental shelf and in the adjacent oceanic region. Journal of Sea Research, 189, 102271. https://doi.org/10.1016/j.seares.2022.102271.
  20. Pawar, S.; Pulle, J.; Shendge, K. (2006): The study on phytoplankton of Pethwadaj Dam, Taluka Kandhar, Disstrict-Naned, Maharashtra. Journal of Environmental Biology, 27(1), 1–6.
  21. Paerl, H.W.; Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial ecology, 65(4), 995–1010. https://link.springer.com/article/10.1007/S00248-012-0159-Y.
  22. Reynolds, C.S. (2006): The ecology of phytoplankton. Cambridge University Press.
  23. Sharma, A.K.; Kamboj, V.; Sharma, A.K.; Thakur, R.; Sharma, M. (2020): Water quality and its impact on phytoplankton diversity: A case study of Tehri reservoir, Garhwal Himalayas. Science Archives, 1(3), 166–173. http://dx.doi.org/10.47587/SA.2020.1315.
  24. Sekerci, Y.; Petrovskii, S. (2015): Mathematical modelling of plankton–oxygen dynamics under climate change. Bulletin of mathematical biology, 77, 2325–2353. https://doi.org/10.1007/s11538-015-0126-0.
  25. Shiel, R.J. (1995): A guide to identification of rotifers, cladocerans and copepods from Australian inland water: Identification Guide series No.3. Cooperative Research Center for Freshwater Ecology, Albury, 1–144.
  26. Singh, U.B.; Ahluwalia, A.S.; Sharma, C.; Jindal, R.; Thakur, R.K. (2013): Planktonic indicators: A promising tool for monitoring water quality (early-warning signals). Ecology, Environment and Conservation, 19(3), 793–800.
  27. Smith, V.H., Joye, S.B.; Howarth, R.W. (2006): Eutrophication of freshwater and marine ecosystems. Limnology and oceanography, 51(1part2), 351–355. https://doi.org/10.4319/lo.2006.51.1_part_2.0351.
  28. Sun, X.; Zhang, H.; Wang, Z.; Huang, T.; Huang, H. (2022): Phytoplankton community response to environmental factors along a salinity gradient in a seagoing river, Tianjin, China. Microorganisms, 11(1), 75. https://doi.org/10.3390/microorganisms11010075.
  29. Tran, T.T.; Liem, N.D.; Hieu, H.H.; Tam, H.T.; Van Mong, N.; Yen, N.T.M.; ... & Luu, P.T. (2023): Assessment of Long-Term Surface Water Quality in Mekong River Estuaries Using A Comprehensive Water Pollution Index. Environment and Natural Resources Journal, 21(6), 524–533. DOI: 10.32526/ennrj/21/20230158.
  30. Udayan, A.; Arumugam, M.; Pandey, A. (2017): Nutraceuticals from algae and cyanobacteria. In: Algal green chemistry (pp. 65–89). Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00004-7.
  31. Umeoka, N. (2024): Physico-Chemical Analysis of Oguta Lake Water and its Effect on Phytoplankton Population. International Journal of Agricultural and Veterinary Science, 3 (1). https://doi.org/10.70382/mejavs.v6i1.004.
  32. Wang, Y.; Wang, K.; Bing, X.; Tan, Y.; Zhou, Q.; Jiang, J.; Zhu, Y. (2024): Influencing factors for the growth of Cladophora and its cell damage and destruction mechanism: Implications for prevention and treatment. Water, 16(13), 1890. https://doi.org/10.3390/w16131890.
  33. Wang, Y.; Zhou, P.; Zhou, W.; Wang, J.; Huang, S.; Ao, H.; ... & Li, G. (2025): Structural diversity and environmental impacts of Cladophora mats in a large plateau brackish lake. Environmental Research, 121674. https://doi.org/10.1016/j.envres.2025.121674.
  34. Yuan, H.; Xiao, Y.; Xie, Y.; Luo, H.; Liu, J.; Xu, J.; ... & Niu, Y. (2024): Structural characteristics of plankton community in Dongting Lake and its relationship with water environmental factors. Scientific Reports, 14(1), 28189. https://doi.org/10.1038/s41598-024-79330-1.