Search



Show Advanced search options Hide Advanced search options
A retrospective look at discovery learning using the Pósa Method in three Hungarian secondary mathematics classrooms
Published February 4, 2022
183-202

While the Pósa Method was originally created for mathematical talent management through extracurricular activities, three "average" public secondary school classrooms in Hungary have taken part in a four-year experiment to implement the Pósa Method, which is based on guided discovery learning of mathematics. In this paper, we examine the stud...ents' and teachers' reflections on the Pósa Method, and how student perspectives have changed between their first and last year of high school. Overall, teachers and students had a positive experience with the Pósa Method. Furthermore, our research indicated that this implementation has met several objectives of the Pósa Method, including enjoyment of mathematics and autonomous thinking.

Subject Classification: 97D40

Show full abstract
13
9
Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
Published October 12, 2020
51-67

In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method empl...oys webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.

Subject Classification: 97D40

Show full abstract
2
4
A computational thinking problem-thread for grade 7 students and above from the Pósa method
Published November 4, 2020
101-110

Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, al...l problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.

Subject Classification: 97D40

Show full abstract
0
5
Inquiry based mathematics education and the development of learning trajectories
Published November 4, 2020
63-89

This article is based on the panel on inquiry based mathematics education and the development of learning trajectories held at the VARGA 100 Conference. After an introduction presenting the theme and organization of the panel, this article focuses on the diversity of conceptualizations of inquiry based education existing today in mathematics ed...ucation and their influence on the vision and development of learning trajectories. More precisely, it considers the conceptualizations respectively associated with Realistic Mathematics Education, Genetic Constructivism, Tamás Varga’s educational approach and the Anthropological Theory of the Didactic, presented by the panellists, and also shows the efforts undertaken in European projects to reach consensusal visions.

Subject Classification: 97C30Q, 97D10, 97D20, 97D30, 97D40, 97D50

Show full abstract
10
22
Categorising question question relationships in the Pósa method
Published November 4, 2020
91-100

The doctoral research of the author – with a reverse didactic engineering (RDE) methodology – aims at reconstructing the theoretical background of the ‘intuitively developed’ Pósa method for inquiry-based learning mathematics (IBME) in Hungarian talent education. Preliminary results of the second step of this theorization is presented,... which applies tools of the Anthropological Theory of the Didactic (ATD). A model is proposed for categorizing question-question relationship with 3 categories: helping question, follow-up question and question of a kernel. The first two of them are claimed to represent two types (relevant or not) of generating-derived questions relationship. The model is also a prospective tool for connected task- and curriculum design and analysis within IBME development.

Subject Classification: 97D20, 97D40, 97D50, 97E50, 97K30

Show full abstract
0
2
1 - 5 of 5 items