
tmcs@science.unideb.hu

http://tmcs.math.klte.hu

13/2 (2015), 195–208
DOI: 10.5485/TMCS.2015.0393

Live & Learn:

When a wrong program works

Tibor Gregorics

Abstract. In this paper an interesting and surprising case study of my programming edu-
cation practice is presented. This case underlines the importance of methods, standards
and rules of thumb of the programming process. These elements of the programming
technology can be taught well in education and they can guarantee the quality of the im-
plemented programs. However the case described in this paper brings an anomaly when
a programming standard is violated during the programming process and, although it
should imply that the implemented program code works badly, the program works per-
fectly. This anomaly is caused by a typical implementation problem: the boundary and
rules of the machine representation of numbers. This anomaly is going to be analyzed
and the appropriate conclusions of our case study will be deducted.

Key words and phrases: programming technology, machine representation of numbers.

ZDM Subject Classification: P50.

1. Introduction

This paper presents a true story that has happened at a laboratory practice

of the course Programming Fundamentals led by me in the BSc of Computer

Science at Eötvös Loránd University.

The foundation of our training of programming in education is to separate

the different phases of the programming process. [5, 6] It is particularly important

that every computer programmer know exactly which part of the programming

activity is being done: the specification, the planning, the implementation or the

testing. Different principles are needed when the task must be analyzed or when

its solution plan must be considered, and other pieces of advice become important

Copyright c© 2015 by University of Debrecen

196 Tibor Gregorics

when the implementation of the plan must be done or when the program code

must be tested. The separation of these activities helps to train the professional

computer programmer, who knows, for example, that it would not be good if the

program code of a wrong plan were to modify instead of correcting the plan itself.

But when we have got a correct plan and when the result of some test cases is

wrong, we must improve the implementation. Thus it offers a lot of advantages

if a task must be solved by students when its specification and abstract program

are given, and students may only focus on the implementation and testing.

The story begins with a control test when students had to implement a given

triple task-specification-algorithm in C++ language and had to confirm that they

understand and can use the rules of thumb of implementation taught by us.

Incidentally this control test was preceded by another lesson with second-year

students where the formal proof of the correctness of algorithms was practised.

It came in handy that the correctness of the abstract program selected to the

control test of the first-year students was proven. This proof strongly relied on

the significant constraint of the precondition of specification that guaranteed the

termination of the program. If somebody forgets to implement this constraint

into the checking of input data, he or she will get a wrong solution. However my

surprise was huge when one of these wrong implementations could work perfectly.

Hereinafter this case is going to be presented, the anomaly of its execution

is going to be investigated and the conclusions of this analysis are going to be

summarized.

2. Plans of a simple programming task

Let us consider the following task. Calculate the product of two natural

numbers so that the operator multiplication cannot be used, only the addition

and the subtraction.

The first step of the solution is to give the specification of the problem. It

has got two input numbers that must be multiplied and one output number. The

data type of these numbers is integer but all of them must be non-negative.

The formal specification with the data:

Input : a ∈ Z, b ∈ Z

Output : c ∈ Z

Precondition : a ≥ 0 ∧ b ≥ 0

Postcondition : c = a · b

Live & Learn 197

The data of the problem may be also derived directly from natural numbers

(N) and in this case the precondition is empty. However, the previous form is

better because it underlines that there is a very important constraint on the

input data and this condition will have to be checked in the program code.

Three integer variables may be introduced: x, y, and z. The variables x and

y will contain the input data, the result will appear in the variable z. The state

space (x : Z, y : Z, z : Z) of this problem will be denoted by State. This is the set

of all possible states, i.e. of all possible triples of integers and their components

are referred by the variables. [4] Now the formal specification with variables can

be considered:

State : x : Z, y : Z, z : Z

Pre : x = a ∧ y = b ∧ x ≥ 0 ∧ y ≥ 0

where a and b are arbitrarily fixed natural numbers

Post : z = a · b

The condition Pre : State → L (where L = {true, false}) identifies the

initial states of the problem and fixes arbitrary initial values (a and b) of the

variables x and y. The condition Post : State → L describes the goal states that

belong to the fixed initial states.

Two different solutions (algorithms) are going to be showed with their formal

verifications. (In fact in respect of the mainstream of this paper it is no important

how the correctness of these algorithms is shown. In my story the formal proof

of the correctness is derived from the lessons of the second-year students.) The

common property of these algorithms is that they do not use temporary variables.

Both algorithms are a sequence of an assignment and a loop, and the body of these

loops contains a simultaneous assignment.

2.1. First plan

The structurgramme of the first algorithm is the following:

Its correctness is going to be proved based on the formal method of Hoare

[1]. We must verify that the abstract program (S1) can solve the problem, i.e.

198 Tibor Gregorics

the program is completely correct regarding the specification (State, Pre, Post).

This fact can be denoted with {{Pre}}S1{{Post}}. Since the structure of the

program is a sequence, it is enough to prove that {{Pre}}z := 0{{Q}} and

{{Q}}loop{{Post}} where Q : State → L is an appropriate intermediate state-

ment. (The loop denotes the loop of the program.) On the one hand, the cri-

terion {{Pre}}z := 0{{Q}} is true if Pre ⇒ Qz←0. The Qz←0 means that the

occurrences of z in Q must be exchanged with zero. On the other hand, in-

stead of the criterion {{Q}}loop{{Post}} it is enough to prove that the criteria

Q ⇒ I, I ∧ x = 0 ⇒ Post, I ∧ x 6= 0 ⇒ t ∈ N and, for all integer c0, the

{{I ∧ x 6= 0 ∧ t = c0}}x, z := x − 1, z + y{{I ∧ t < c0}} are true. In these

criteria the logical function I : State → L is an appropriate, so-called invariant

condition and the function t : State → Z is an appropriate, so-called termination

function. The last criterion can be proven with the verification of the statement

I ∧ x 6= 0 ∧ t = c0 ⇒ (I ∧ t < c0)
x,z←x−1,z+y.

Let the invariant I be the statement x ≥ 0∧ z+ x · y = a · b, the termination

function t always shows the value of the variable x, and let Q = I. In this case

the criteria which must be proven are the following:

• Pre ⇒ Qz←0. It is true because Pre = (x = a ∧ y = b ∧ x ≥ 0 ∧ y ≥ 0) and

Iz←0 = (x ≥ 0 ∧ x · y = a · b);

• Q ⇒ I. It is fairly trivial because Q = I;

• I ∧x = 0 ⇒ Post. It is true because z+x ·y = a · b is in I, thus x = 0 implies

z = a · b;

• I ∧ x 6= 0 ⇒ x ∈ N. It is true because x : Z and I implies x ≥ 0.

• I ∧ x ≥ 0 ∧ x = c0 ⇒ (I ∧ x 6= c0)
x,z←x−1,z+y. The consequence must

be calculated in the following way: (I ∧ x < c0)
x,z←x−1,z+y = (x − 1 ≥

0∧ z+ y+(x− 1) · y = a · b∧x− 1 < c0). The x− 1 ≥ 0 comes from x 6= 0 of

I and from the loop condition x 6= 0. The equation z + y + (x− 1) · y = a · b

is the same that the equation z + x · y = a · b in I. The condition x− 1 < c0

is true if x = c0.

It can be observed that neither the algorithm nor the proof of its correctness

uses the constraint y ≥ 0 of the precondition. In contrast, the constraint x ≥ 0,

which also appears in the invariant, is indispensable to the proof of termination.

The constraint x ≥ 0 implies that the value of the variable x (this is the value of

the termination function) is a natural number during the loop. The body of the

loop decreases this value thus the loop must terminate because a natural number

cannot be decreased infinite times so that it remains a natural number.

Live & Learn 199

2.2. Second plan

The second algorithm is a good example of a case when the solution is not

born in the way of the algorithmic thinking but of the formal program synthesis.

This process is also based on Hoare’s method but initially the algorithm is not

known. The algorithm is formed step by step so that meanwhile the criteria of the

correctness derived from Hoare’s method are also proven. (Here we also follow

Dijkstra’s and Gries’ work. [2, 3])

Let us suppose that a loop can solve the problem. In this case an in-

variant statement is needed in order to check, for example, the criterion I ∧

¬loopcondition ⇒ Post. Almost the same invariant is selected as in the first

solution but it is extended by both extra constraints of the precondition, that is

I = (x ≥ 0∧y ≥ 0∧z+x ·y = a · b). It can be seen that the postcondition follows

from this invariant if x = 0 or y = 0. Thus the loop condition must be given as

x 6= 0 ∧ y 6= 0 and one criterion has been proven.

We need a termination function. Its value depends on the variables of the

program and this value must be decreased by the body of the loop. If t =

x + y, then its value is a natural number because of I and it can be decreased

by decreasing x, by decreasing y, or by decreasing both. Thus the simultaneous

assignment x, y := x − 1, y − 1 is placed into the body of the loop. Meanwhile,

two other criteria are proven: I ∧ x 6= 0 ∧ y 6= 0 ⇒ t ∈ N and for all integer

c0 {{I ∧ x 6= 0 ∧ y 6= 0 ∧ x + y = c0}}x, z := x − 1, z + y{{x + y < c0}}. The

last one is the half of the criterion {{I ∧ x 6= 0 ∧ y 6= 0 ∧ x + y = c0}}x, z :=

x− 1, z + y{{I ∧ x+ y < c0}}.

Now the other half of the last criterion should also be proven, that is, {{I∧x 6=

0 ∧ y 6= 0}}x, y := x− 1, y − 1{{I}}. Instead of this, it is enough to show that

I ∧ x 6= 0 ∧ y 6= 0 ⇒ Ix,y←x−1,y−1 =

= (x− 1 ≥ 0 ∧ y − 1 ≥ 0 ∧ z + (x− 1) · (y − 1) = a · b) =

= (x− 1 ≥ 0 ∧ y − 1 ≥ 0 ∧ z − x− y + 1 + x · y = a · b).

The condition x − 1 ≥ 0 ∧ y − 1 ≥ 0 follows from the loop condition

x 6= 0 ∧ y 6= 0 and from x ≥ 0 ∧ y ≥ 0 of I. However, the equation

z−x− y+1+x · y = a · b is not true. Comparing it with the equation z+x · y =

a · b of I, we can see that there is less on its left side than on the right side

by x + y − 1. Nevertheless, if the value x + y − 1 were added to the variable

z, the equation z − x − y + 1 + x · y = a · b would be true and the criterion

I ∧ x 6= 0 ∧ y 6= 0 ⇒ Ix,y,z←x−1,y−1,z+x+y−1 would be proven. According to

this, the simultaneous assignment of the body of the loop must be extended by

200 Tibor Gregorics

z := z+x+y−1. This modification has no impact on the criteria justified earlier:

the body of the loop can still decrease the value of the termination function.

Only one criterion must be proven yet: Pre ⇒ I. Altough the x ≥ 0 ∧ y ≥ 0

of I comes from Pre, the equation z + x · y = a · b does not. It would be true

only if z = 0 (x = a and y = b also come from Pre). Since Pre ⇒ Iz←0, this can

be written in the form {{Pre}}z := 0{{I}}, is true, the precondition of the loop

created before can be changed to I, the missing criterion of the correctness of the

loop will be I ⇒ I. Thus {{I}}loop{{Post}} will be true. If the structure of

our algorithm (it is denoted by S2) were a sequence of the assignment z := 0 and

of the loop, the algorithm would solve the problem, hence {{Pre}}S2{{Post}}

follows from {{Pre}}z := 0{{I}} and {{I}}loop{{Post}}.

The constraints x ≥ 0 and y ≥ 0 guarantee that the loop can terminate in

finite steps. These constraints imply that the value of the termination function

is a natural number during the execution of the loop. As the body of the loop

decreases the value of the termination function, the loop must stop in finite steps

because a natural number cannot be decreased infinite times so that it remains a

natural number.

3. Implementation and testing of the plans

The implementation and testing of a plan can be helped by numerous meth-

ods, standards and rules of thumb. [6]

A general principle of the implementation is that the code of the program can

be made in five steps: the frame, the code of the abstract program, the reading

and checking of input data, the writing of the results, and the declaration of the

variables. Some rules of thumb connecting to these steps are presented below.

(1) The frame of the program code depends on the selected programming lan-

guage. For example in C++ the main program must be placed into the body

of the function main().

(2) The input variables are the ones which are mentioned in the precondition of

the specification.

Live & Learn 201

Figure 1. The correct code of the first solution

• An extra code is needed to read the initial value of the input variables.

• The data type of the input variable and its extra constraint (found in

the precondition) show together what kind of data checking must be

implemented after the reading.

• The non-functional requirements (such as the foolproof reading) can in-

fluence the way of data checking.

(3) The result variables can be found in the postcondition of the specification.

Their values must be written.

(4) The code of the structured abstract algorithm can be made along the embed-

ded program structures top-down.

202 Tibor Gregorics

• A simultaneous assignment can be substituted by simple assigments.

Their order is determined by the dependency of the variables of the

simultaneous assignment.

(5) Before the variables are declared in the program code, it is important to see

which concrete data type can substitute the famous abstract data type. For

example in C++ the ”int” can be used for natural numbers or integers.

The effects of these rules of thumb can be seen in the correct implementation

of the first plan. (Figure 1.)

Certainly, a wrong code may be also created. In my story, the typical mistake

was that students forgot to implement the extra constraints of the precondition

and did not build the checking of input data into the code. (Figure 2.)

Figure 2. The wrong code of the first solution

A wrong code can be detected by testing. Let us see a few suggestions for

testing of the solution of simple programming tasks. [6]

(1) There are two basic categories of the test cases: the black box test cases and

the white box test cases. The black box test cases are based only on the

specification. The white box test cases are derived from the program code.

(2) Inside the black box test cases, it is worth distinguishing the valid and the

invalid cases. An input data is valid if it satisfies the constraints of the

precondition. Otherwise it is invalid.

Live & Learn 203

(3) Special test cases are generated by the properties of a data type. For exam-

ple the values of the integer can be divided into three parts: positive ones,

negative ones, and zero.

(4) The postcondition helps to discover the special test cases. For example,

at a multiplication, it is worth checking the commutative and associative

properties of the multiplication operator, or the result if one of the operands

is zero or a unit.

Let us return to our wrong code. It can work correctly with valid input data.

(Figure 3.)

Figure 3. The execution of the first solution with valid input data

The wrong version should work incorrectly with invalid input data, when the

value of x is negative. Analyzing the abstract algorithm we would expect that

the program will not terminate if x = −2 and y = 5. However, in spite of our

expectation, the execution of the program stops, although the running time is

longer than the running time with valid input data. (The elapsed time, which the

running environment shows, includes the time of entering inputs but the difference

of the running times can be seen well. This difference would be greater if the type

long was used instead of the type int.) The most surprising fact is that the result

is also correct. (Figure 4.)

Figure 4. The execution of the first solution with one invalid input
data

204 Tibor Gregorics

On top of all that, the program can work correctly with any negative integers.

(Figure 5.)

Figure 5. The execution of the first solution when both input data are
invalid

The same phenomenon can be observed when the implementation of the sec-

ond solution is analyzed. The only difference is that not only the negative x but

also the negative y should cause an infinite loop if y < x. But it does not happen.

What may be the cause of this: the originally correct algorithm with an

incorrect implementation can work correctly? Does it work correctly with only

some invalid input data or with all of them?

4. Machine representation of numbers

There is no doubt that the cause of the termination of our program with

invalid input data can be found among the restrictions of the representation of

numbers. The smallest negative integer that can be represented on k bits in two’s

complement is −2k−1 and its code is 100 . . . 000(2). Decreasing it by 1, that is,

adding the two’s complement code of −1 (this is 111 . . . 111(2)) we get the k + 1

length code 1011 . . . 111(2). Because of the overflow, the first bit is lost and the

value of the remaining code is 011 . . . 111(2), that is 2
k−1− 1. This is the greatest

positive integer that can be represented on k bits in two’s complement. According

to this, when the variable x starts to decrease one by one from its initial value

−2 and it reaches the smallest negative integer, the next step results the greatest

positive integer in x. Continuing the reduction of x, the value of x reaches zero

and the program terminates. Nevertheless, why is the result of the wrong program

correct?

Live & Learn 205

Let us introduce some notations. If k ∈ N
+, n ∈ N, x ∈ Z, and s ∈ {0, 1}k

(k-length sequence of bits)

bin : N× N
+ → {0, 1}k

bin(n, k) ::=< (n div 2k−1) mod 2, (n div 2k−2) mod 2, . . . , n mod 2 >

value : {0, 1}k → N

value(s) ::=
∑

i=1...k si ∗ 2
k−i

inverse : {0, 1}k → {0, 1}k

inverse(s) ::=< 1− s1, . . . , 1− sk >

inc : {0, 1}k → {0, 1}k

inc(s) ::= bin(value(s) + 1, k)

code : Z× N
+ → {0, 1}k

if x ≥ 0, code(x, k) ::= bin(x, k)

if x < 0, code(x, k) ::= inverse(inc(bin(|x|, k))) decode : {0, 1}k → Z

if s1 = 0, decode(s) ::= value(s)

if s1 = 1, decode(s) ::= −value(inc(inverse(s)))

Denote [x]k the integer that is the value of two’s complement code of the in-

teger x on k bits. Shortly: [x]k ::= decode(code(x, k), k). Because of the overflow,

it is conceivable that [x]k 6= x.

Our aim is to show that the result of our badly implemented program is equal

to the correct product x · y for all integer x and y if there is no overflow in the

representation of x, y, or x · y. First of all, two lemmas must be proven.

Lemma 1. Let a, b and k be arbitrary integers.

[a+ n · 2k]k = [a]k for all n ∈ Z (1a)

[[a]k + b]k = [a+ b]k (1b)

Proof. Since the last k bits of the binary code of 2k are zero, if n ·2k (where

n is an arbitrary integer) is added to an arbitrary integer a, the last k bits of its

binary code will not change. It follows the first statement, The second statement

is also true. It is enough to take a in form [a]k + n · 2k where n ∈ Z and we get

[a+ b]k = [[a]k + n · 2k + b]k = [[a]k + b]k.

�

206 Tibor Gregorics

Denote res1(x, y) the result of the badly implementation of our first algorithm

(the algorithm is in the subsection 2.1, its implementation can be found on the

Figure 2) if the input data are x and y.

Theorem 1. For all integers x and y where [x]k = x and [y]k = y,

res1(x, y) = [x · y]k.

Proof. The first program counts a multiple summation of y where overflow

may occur: res1(x, y) = [. . . [[y + y]k + y]k + . . .]k. Because of the lemma (1b),

this formula can be written in form [y + y + . . .]k.

If x ≥ 0 (this case was verified in the framework of planning), the number of

the iteration is x, so res1(x, y) = [
∑

i=1...x y]k = [x · y]k.

If x < 0, the number of the iteration is 2k − |x|, and using the lemma (1a)

where a = x · y and n = y, furthermore x = −|x| because x < 0, we get

res1(x, y) = [
∑

i=1...2k−|x| y]k = [(2k − |x|) · y]k =

= [(2k + x) · y]k = [2k · y + x · y]k = [x · y]k.

�

Denote res2(x, y) the result of the incorrect implementation (when the extra

constraints of the precondition are not implemented) of the algorithm of the

subsection 2.2 if the input data are x and y.

Theorem 2. For all integers x and y where [x]k = x and [y]k = y,

res2(x, y) = [x · y]k.

Proof. The second program counts a multiple summation of x+y−1 where

overflow may occur:

res2(x, y) = [. . . [[(x+ y − 1)]k + ([x− 1]k + [y − 1]k − 1)]k + . . .]k =

= [(x+ y − 1) + (x− 1 + y − 1− 1) + . . .]k.

In the last step we have used the lemma (1b). Without loss of generality, we can

assume that x < y.

If x ≥ 0 (this case was verified in the framework of planning), the number of

the iteration is x, so

res2(x, y) = [
∑

i=0...x−1 x− i+ y − i− 1]k =

= [−2 · (
∑

i=0...x−1 i) + (
∑

i=0...x−1 x+ y − 1)]k =

= [−x · (x− 1) + x · (x+ y − 1)]k = [x · y]k.

Live & Learn 207

If x < 0, the number of the iteration is 2k − |x|, so

res2(x, y) = [(
∑

i=0...2k−|x|−1 x− i+ y − i− 1)]k =

= [−2 · (
∑

i=0...2k−|x|−1 i) + (
∑

i=0...2k−|x|−1 x+ y − 1)]k =

= [−(2k − |x|) · (2k − |x| − 1) + (2k − |x|) · (x+ y − 1)]k =

= [(|x| − 2k) · (2k − |x| − x− y)]k =

= [|x| · (−|x| − x− y)− 2k · (−|x|+ 2k + |x| − x− y)]k =

= [|x| · (−|x| − x− y)]k = [(−x) · (−y)]k = [x · y]k.

In the last row we have applied the lemma (1a) where a = |x| · (−|x| −x− y) and

n = −(−|x|+ 2k + |x| − x− y), and we have used that x = −|x| because x < 0.

�

5. Conclusions

In the above case study two rules of thumb were violated but their effects

neutralized each other. The conjunction of the abandonment of data checking and

the disregard of the boundary of the machine representation result an extraordi-

nary phenomenon: our programs could also work on invalid (negative) numbers.

In spite of this interesting example, it is worth to apply and teach the methods,

standards and rules of thumb of the programming technology. For example, the

partition of the programming process into four phases has helped to detect that

the incorrect implementation caused the anomaly observed.

Another conclusion of our case study is that the role of the boundary of

the machine representation is more important in simple programming tasks than

what I have thought earlier. The replacement of an abstract data type with a

concrete one deserves more attention.

Perhaps the most interesting conclusion was that I have discovered an enigma

after thirty years of practice in a course for first-year students. Identifying and

solving this riddle do not only cause felicity to us but it can also complement our

expertise in informatics. Well, you live and learn.

208 T. Gregorics : Live & Learn

References

[1] C. A. R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12,
no. 10 (1969), 576–580.

[2] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[3] D. Gries, The Science of Programming, Springer-Verlag, 1981.

[4] T. Gregorics, Concept of abstract program, Acta Universitatis Sapientiae, Informat-

ica, 4, no. 1 (2012), 7–16.

[5] T. Gregorics, Programozás 1.kötet Tervezés, ELTE Eötvös Kiadó, 2013 (in Hungar-
ian).

[6] T. Gregorics, Programozás 2. kötet Megvalóśıtás, ELTE Eötvös Kiadó, 2013 (in Hun-
garian).

TIBOR GREGORICS

DEPT. SOFTWARE TECHNOLOGY AND METHODOLOGY

FACULTY OF INFORMATICS, ELTE

1117 BUDAPEST PÁZMÁNY PÉTER SÉTÁNY 1/C

E-mail: gt@inf.elte.hu

(Received February, 2015)

