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Approximated Poncelet

configurations

Örs Nagy and Szilárd András

Motto: A picture is worth a thousand words

Abstract. In this short note we present the approximate construction of closed Poncelet
configurations using the simulation of a mathematical pendulum. Although the idea
goes back to the work of Jacobi ([17]), only the use of modern computer technologies
assures the success of the construction. We present also some remarks on using such
problems in project based university courses and we present a Matlab program able
to produce animated Poncelet configurations with given period. In the same spirit we
construct Steiner configurations and we give a few teaching oriented remarks on the
Poncelet grid theorem.
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Introduction

Jean-Victor Poncelet was a French military engineer and mathematician. He

served in Napoleon’s campaign against the Russian Empire and he was captured

as a war prisoner between 1812 and 1814. During this period he wrote his most

important work ([20]) which is considered the first treatise on modern projective

geometry. In this book he studied the following iterated construction:

Consider two circles (or conics in the general case) Γ and γ. Starting from

the point A0 ∈ Γ draw a tangent to γ which intersects Γ for the second time
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in A1. Repeating this construction we can define the sequence (An)n≥0, where

Ak ∈ Γ, ∀k ≥ 0 and AkAk+1 is tangent to γ for all k ≥ 0.

This construction is called the Poncelet construction. In the same book Pon-

celet proved the following theorem:

Theorem 1. ([20],[15],[10]) If the sequence (An)n≥0 from the Poncelet con-

struction is periodic with period k for some point A0 ∈ Γ, then it is periodic for

all A0 ∈ Γ and has the same period k.

Figure 1. Closed Poncelet construction with period k = 5

This theorem is trivial for concentric circles but its elementary proof for ar-

bitrary circles needs a high level ingeniosity (see [24]). In the last two centuries

many mathematicians studied this problem (Fuss 1792, Steiner 1827, Richelot

1830, Jacobi 1823, Chaundy 1923, Kerawala 1947) and there exists several proofs

for this theorem but most of them uses higher mathematics (elliptic functions,

theory of algebraic curves). Hence this property can be formulated in the frame-

work of elementary euclidian geometry but its real structure is far beyond this

level.

Poncelet’s theorem shows that the appearance of a closed Poncelet construc-

tion is determined by the two conics and their mutual position, so we can call

(Γ, γ) a k-Poncelet configuration if the Poncelet construction has period k for all

A0 ∈ Γ. Results concerning the characterization of these configurations were es-

tablished by Cayley in 1853 (see [5] or [10])) and recently by Dominique Hulin in

2007 (see [16]). Some additional properties of these Poncelet configurations were
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recently discovered by R. E. Schwarz ([25]), A. Hraskó ([15]) and S. Tabachnikov

([28]).

A major impediment in the study of such configurations (and in the teaching

of the related properties) is the fact that the construction of a k-Poncelet config-

urations is a very hard problem. Our intention is to give a computer algorithm

(or a numerical method) for the construction of a Poncelet configurations with

given period k in order to produce educational applets, animations. We have to

mention that such configurations, animations are not available in dynamic geo-

metric software or at web resources for k ≥ 5. We have found a Java applet which

generates animations for Poncelet’s porism (see [26]) in the special case when Γ

is a circle, γ is an ellipse and they have a common center of symmetry. For our

purpose neither the Cayley conditions nor the Hulin decomposition proved to be

useful in order to obtain an acceptable accuracy from the numerical approxima-

tions. Our approach relies on Jacobi’s proof of the Poncelet theorem (see [17])

and uses the following property:

Theorem 2. Denote by Γ = ∂C(O, l) the circle of radius l obtained as the

orbit of a mathematical pendulum with period T. Denote by Aj the position of the

pendulum at the moment j nT
k with 0 ≤ j ≤ k. The lines A0A1, A1A2, . . . , Ak−1Ak

are tangents to a circle γ and the pair (Γ, γ) is a k-Poncelet configuration.

The above property shows that in order to produce Poncelet configurations we

need to simulate the motion of a mathematical pendulum, to calculate the period

T, to determine the coordinates of the points A0, A1, . . . , Ak−1 and to calculate the

coordinates of the center and the radius of the inner circle γ. Our Matlab program

performs these steps and can be found (together with some png animations) at

http://www.math.ubbcluj.ro/~andrasz/poncelet/Animations.html

If we replace the lines AiAi+1 in the Poncelet theorem with circles Ci for each

i ∈ {0, 1, . . . k − 1} such that Ci and Ci+1 are tangent (in Ti) for 0 ≤ i ≤ k − 1

(where Ck is C0) and all the circles Ci are tangent to Γ and γ we obtain the

Steiner theorem. The Steiner theorem can be reduced to the Poncelet theorem if

we observe that the loci of centers of the circles which are tangents to Γ and γ is

an ellipse and the lines connecting the centers of circles Ci, Ci+1 are all tangent

to a given circle C (see figure 3). An other proof of the Steiner theorem uses

the fact that there exists an inversion which transforms Γ and γ into concentric

circles. This idea can be used to generate Steiner configurations by constructing

a corresponding Steiner configuration (with fixed n and k) for concentric circles

and applying an inversion.
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Figure 2. Poncelet configurations with k = 13, n = 6 and k = 15, n = 4

Figure 3. Steiner configurations with k = 5, n = 1 and k = 5, n = 2

If we take a closer look to the second diagram of figure 3 and also to figure 4

we can observe that the circles C0, C1, . . . , Ck−1 may have intersection points (that

are different from the tangency points). If Γ and γ are concentric circles than

these intersection points are on some circles, hence this property remains true for

the general case (see figure 4).

A similar property of the Poncelet configurations is the recently discovered

Poncelet grid (see [25]). On figure 5 we can observe that the set of all intersection

points determined by two of the sides A0A1, A1A2, . . . , Ak−1A0 can be partitioned

such that each class of the partition contains exactly k points and the points
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Figure 4. Additional properties of the Steiner configurations

belonging to a class of the partition are moving on an ellipse when A0 moves

along Γ.

Figure 5. The ellipses containing the Poncelet grid

Moreover we can observe the following property
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Theorem 3. Consider a k-Poncelet configuration (Γ, γ). If the points of a

Poncelet grid are contained on the ellipses E1, E2, . . . , Em and the points on Ej are

labeled sequentially Xj,1, Xj,2, . . . , Xj,k then for each v ∈ {1, 2, . . . ,m} there ex-

ists an ellipse1 which is tangent to the linesXj,1Xj,1+v, Xj,2Xj,2+v, . . . Xj,kXj,k+v.

Remark 1. This property is illustrated on figure 6 and shows that from a

Poncelet configuration we can obtain infinitely many nested Poncelet grids be-

longing to Poncelet configurations with the same period k. The above theorem is

mainly contained in [25] (theorem 1.1) but we think that it is useful to specify

(especially for teaching reasons) that there are several Poncelet polygons with the

same set of vertices. This is not clarified in [25] and the figures therein do not

contain all the polygons.

Figure 6. Additional properties of the Poncelet grid

Remarks and teaching experience

We used the Poncelet closure theorem in our teaching activity at different

levels. We worked with highschool students in several summer camps on the

understanding of the elementary proofs. We have to mention that a completely

elementary proof can be found in the book of Sharigin ([24]). We included this

theorem into an undergraduate geometry course for university students in the

1in the general case instead of ellipses we have conics
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first year, we used the Poncelet porism problem as an individual project subject

for computer science students, we used the connection between the mathematical

pendulum and the Poncelet theorem in a course on dynamical systems for com-

puter science students and the study of new properties related to the Poncelet

theorem (see [15], [3],[8], [25], [28]). The need of high quality visualization ap-

peared at all these levels while it is almost impossible to draw or to construct exact

figures if the period of construction k satisfies k ≥ 6. As Howard Crosby wrote “A

wisely chosen illustration is almost essential to fasten the truth upon the ordinary

mind, and no teacher can afford to neglect this part of his preparation.” In order

to fulfill the necessity of a “wisely chosen illustration” we used our own figures.

But at highschool level the proofs and our figures were not convincing enough

(due to their complexity), the students understood the theorem but they were

unable to construct their own Poncelet configuration and this lead to a serious

frustration. Some very probable roots of such a frustration were formulated by S.

Papert: “Better learning will not come from finding better ways for the teacher

to instruct, but from giving the learner better opportunities to construct.” and

also by Kurt Levin: “If you want to truly understand something, try to change

it.” Unfortunately minor changes in the problem can lead to very hard problems,

that they can’t handle. We observed that at some of our students the initial frus-

tration was transformed into a very deep motivation for further studies. We also

have to point out that the use of animated Poncelet constructions helped a lot

in the understanding of the Poncelet theorem and in the connection between the

pendulum’s motion and the Poncelet theorem. We had also a teaching activity

where the students rediscovered the existence of the Poncelet grid and theorem

3 using the analogy between the Steiner and the Poncelet porism and construct-

ing the corresponding animations. We can conclude that if a picture is worth a

thousand words, then an animation (or simulation) is worth a thousand pictures.

On the other side these animations were not helpful in understanding the

mathematical background and the proofs. This probably is connected with the

ancient Chinese proverb “Tell me and I’ll forget; show me and I may remember;

involve me and I’ll understand.” We think that although the use of visualizations

is indispensable we have to take care to avoid the situation when things are showed

to students and they don’t get involved.

Working with computer science students was a completely different experience

because some of them get the problem as an individual project, so they had

to develop a computer program which constructs Poncelet configurations. This

framework assured that they got involved.
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Proofs

For the sake of completeness we recall some well known facts about the math-

ematical pendulum and Jacobi’s elliptical functions. For a few more details we

recommend [1]. Consider a mathematical pendulum with length l and initial posi-

tion characterized by ϕ(0) and ϕ′(0) (see figure 7). The motion of this pendulum

j
m

l

F
j

v

Figure 7. The mathematical pendulum

is governed by the equation

ϕ′′ +
g

l
sinϕ = 0.

Lemma 1. The period of the pendulum can be expressed as

T = 4

√

l

g
E
(π

2
, sin

ϕ0

2

)

,

where

E(ϕ, k) =

∫ ϕ

0

dt
√

1− k2 sin2 t
is the elliptic integral of the first kind.

Definition 1. If k ∈ (0, 1) and

E(ϕ) =

∫ ϕ

0

dt
√

1− k2 sin2 t

is the elliptic integral of the first kind, then with the inverse z → Am(z) of the

function ϕ → E(ϕ) (Am(z) = ϕ ⇔ z = E(ϕ)) we can define Jacobi’s elliptic

functions:

sn(z) = sin(Am(z));

cn(z) = cos(Am(z));

dn(z) =

√

1− k2 sin2 Am(z).
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Lemma 2. The solution of the Cauchy problem ϕ′′(t) = −k2 sin(ϕ(t)) ϕ(t0) =

ϕ0 and ϕ′(t0) = ϕ′
0 is the function

ϕ(t) = 2Am(ν(t− t0) +K1), (1)

where

K1 =

ϕ0/2
∫

0

du
√

1− ρ2 sin2(u)
, ρ =

k

ν

ν =

√

1

4
(ϕ′

0)
2 + k2 sin2

(ϕ0

2

)

.

Proof of theorem 2 and 3. Consider Γ = ∂C(O, l) the orbit of the pen-

dulum and C(I, r) the circle with center I and radius r. Let O be the origin

and OI the Ox axis, so
−→
OI = λ~i where |λ| + r < l. If Qk ∈ Γ, k ∈ {1, 2} are

two distinct points, then there exist (α1, α2) ∈ R
2 with α1 − α2 /∈ 2πZ and

−−→
OQk = l(~i cosαk +~j sinαk).

Figure 8. Two positions of the pendulum

The equation of the line Q1Q2 is

L(x, y) := x cos

(

α1 + α2

2

)

+ y sin

(

α1 + α2

2

)

− l cos

(

α1 − α2

2

)

= 0. (2)
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The distance from I(λ, 0) to the line Q1Q2 is |L(λ, 0)|, so Q1Q2 is tangent to the

interior circle if and only if L(λ, 0) = εr, where ε ∈ {−1, 1}. Hence the tangents

to the interior circle can be characterized by the equation

λ cos

(

α1 + α2

2

)

− l cos

(

α1 − α2

2

)

− εr = 0. (3)

Denote by T the period of the pendulum, by k the period of the desired

construction and by n the number of pendulum periods used for the construction.

In addition for each 0 ≤ j ≤ k denote by Aj the position of the pendulum at

the moment tj = jτ with τ = nπ
k . In order to prove theorem 2 and 3 it is

sufficient to prove that the lines AjAj+v, 0 ≤ j ≤ k are tangents of a fixed

circle C(I, r). Moreover we prove that if Θp(t) is the solution of the pendulum’s

equation (with initial conditions ϕ(t0) and ϕ′(t0)) at the moment t − pτ and

Ap(t) the position of the pendulum, then for all t the lines Ap(t)Ap+v(t) are

tangents2 to a fixed circle Cv(I, r). Due to lemma 2 for ϕ0 = t0 = 0 we have

Θp(t) = ϕ(t− pτ) = 2Am(ν(t− pτ)), where ν = 1

2
|ϕ̇0|.

According to (2) the equation of the line Ap(t)Ap+v(t) is:

x cos

(

Θp(t) + Θp+v(t)

2

)

+ y sin

(

Θp(t) + Θp+v(t)

2

)

−

−l cos

(

Θp(t)−Θp+v(t)

2

)

= 0

With the notations s := ν(t − pτ) and δ = vτ we have ν(t − (p + v)τ) =

s− νvτ = s− δ, so

cos

(

Θp(t) + Θp+v(t)

2

)

= cos(Am(s) + Am(s− δ)) =

= cn(s) cn(s− δ)− sn(s) sn(s− δ) (4)

and

cos

(

Θp(t)−Θp+v(t)

2

)

= cn(s) cn(s− δ) + sn(s) sn(s− δ). (5)

Due to (4) and (5) for the expression

S := l
dn(δ)− 1

dn(δ) + 1
cos

(

Θp(t) + Θp+v(t)

2

)

− l cos

(

Θp(t)−Θp+v(t)

2

)

we obtain

S = −
2l

1 + dn(δ)
(cn(s) cn(s− δ) + sn(s) sn(s− δ) dn(δ)), (6)

2This is a key element in designing the animations.
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which leads to

S = −
2l cn(δ)

1 + dn(δ)
. (7)

This implies that the lines Ap(t)Ap+v(t) are tangents to the circle C(I, r) for

all t ∈ R if
−→
OI = l

dn(δ)− 1

dn(δ) + 1
~i,

and

r =
2l| cn(δ)|

1 + dn(δ)
.

�

Remark 2. This proof is in fact Jacobi’s original proof (with somewhat

modified notations) for v = 1. For 1 ≤ v ≤ [(k−1)/2] we obtain different polygons

with the same vertices. If we denote by X1X2 . . . Xk the convex Poncelet polygon

inscribed in Γ, then the points of the associated Poncelet grid can be obtained by

constructing all diagonals of the polygonX1X2 . . . Xk.Moreover if Ev is a Poncelet

“gridline”, then the intersection pointsXj1Xj2, . . . Xjk generate an other Poncelet

grid.

Remark 3. Using the same ideas as in the above proof we can show that

the intersection points AiAj ∩ Ai+vAj+v belong to an ellipse for fixed i, j and

1 ≤ v ≤ k, so this approach represents an alternative proof for theorem 1.1. from

[25].

Concluding remarks

• The use of visualizations and animations is strongly recommended in the

teaching of mathematics. Moreover it is helpful if the students can generate

their own animations using some mathematical software (Matlab, Mathe-

matica). In order to overcome this need the teacher training curricula must

contain special courses on the use of modern technology. The Poncelet and

the Steiner theorem represents a very good teaching example in this direc-

tion because the configurations can not be constructed without a computer

for arbitrary k.
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• The parallel use of modern technologies (computers) and traditional meth-

ods/accesories is an imperative necessity of high quality inquiry based math-

ematical education. This implies that the classical classroom settings, the

organization of activities must be completely restructured in order to fulfill

this necessity and to improve performance.

• It would be interesting to generate also Zig-Zag and Ponzag configurations

using the equivalences from [14] and [15].

• It would be helpful in many teaching situations to include the Poncelet and

the Steiner porism into dynamic geometric softwares like Geonext, Geogebra,

Cabri.
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2008.
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SZILÁRD ANDRÁS
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