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Maximum and minimum problems in

secondary school education

Zsolt Fülöp

Abstract. The aim of this paper is to offer some possible ways of solving extreme value
problems by elementary methods with which the generally available method of differ-
ential calculus can be avoided. We line up some problems which can be solved by the
usage of these elementary methods in secondary school education. The importance of
the extremum problems is ignored in the regular curriculum; however they are in the
main stream of competition problems - therefore they are useful tools in the selection
and development of talented students. The extremum problem-solving by elementary
methods means the replacement of the methods of differential calculus (which are quite
stereotyped) by the elementary methods collected from different fields of Mathematics,
such as elementary inequalities between geometric, arithmetic and square means, the
codomain of the quadratic and trigonometric functions, etc. In the first part we show
some patterns that students can imitate in solving similar problems. These patterns
could also provide some ideas for Hungarian teachers on how to introduce this topic
in their practice. In the second part we discuss the results of a survey carried out in
two secondary schools and we formulate our conclusion concerning the improvement of
students’ performance in solving these kind of problems.
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mentary methods, learning difficulties, functions of several variables, the method of the
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1. Introduction

In the secondary school education the extreme value problems, or maximum

and minimum problems, or problems concerned with the greatest and the least

values, are more attractive than other mathematical problems. We may observe
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that everyday life problems are very often maximum and minimum problems of

a sort. We wish to obtain a certain object at the lowest price, or the greatest

possible effect with a certain effort, or a certain effect with the minimum cost,

or the maximum work done within a given time. The physicists gave clear and

useful forms to ideas of this sort; they describe certain physical phenomena in

terms of “minimum principles”. The first dynamical principle of this kind, the

“Principle of Least Action” (which usually goes under the name of Maupertius),

was essentially developed by Euler.

The differential calculus provides a general method for solving problems on

minima and maxima. The present day secondary school curriculum does not

contain the elements of differencial and integral calculus (we do not mean the

secondary schools with advanced mathematical teaching programme). But it

does not mean that we cannot deal with extreme value problems in secondary

school educational processes, since the most of these problems can be solved by

elementary methods. Therewith, we can solve, by elementary methods, many

problems which need the partial differential of a function of several real variables

(and this method is not included in any secondary school curriculum). In short,

the problem-solving by elementary methods means the replacement of the meth-

ods based on differential calculus, which are quite stereotyped, by the elementary

methods collected from different fields of Mathematics, such as elementary in-

equalities between geometric, arithmetic and square means, the codomain of the

quadratic and trigonometric functions, etc. In the case of elementary methods

there are no generally valid rules to solve the problems, every exercise is a partic-

ular problem. However, having solved a problem with real insight and interest,

the students aquire a precious possession: a pattern, a model, that they can imi-

tate in solving similar problems. They develop this pattern if they try to follow

it, if they reflect upon the analogy of problems solved, upon the relevant circum-

stances that make a problem accessible to this kind of solution, etc. Developing

such a pattern, they may finally attain a real discovery and they have a chance

to aquire some well ordered and readily available knowledge. In this way, we con-

sider a restricted usage of the differencial calculus is legitimate, however we do

not undervalue the enormous scientific importance of the differencial and integral

calculus. These chapters of the mathematical analysis are very useful, because

they make it possible to handle a lot of problems which cannot be solved by el-

ementary methods. While we teach the mathematical analysis (of course, in the

schools with advanced mathematical teaching programme) we have to underline

this kind of problems in order to point out the value of the acquired knowledge,
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but we have to avoid the discussion of problems which can also be solved by

elementary methods.

2. Possible applications in secondary school

Solving extreme value problems is a challenge for secondary school students.

The Hungarian mathematics curriculum includes this type of problems for 10th

grade students (see [7]). Most of the problems are in conjunction with the maxi-

mum or minimum points of a quadratic function, and the basic inequality between

geometric, arithmetic and square means. In the following we would like to offer

an other point of view concerning this type of problems, and to show some new

patterns that the Hungarian teachers could use in teaching of (not only) talented

students.

2.1. The theorem of the arithmetic and geometric means and its
consequences

In the secondary school educational processes we can use the following theo-

rems.

Theorem 1. The product of n positive real numbers with a given sum be-

comes a maximum when these numbers are all equal.

Theorem 2. The sum of n positive real numbers with a given product be-

comes a minimum when these numbers are all equal.

Theorem 1 and 2 are different formulations of the so-called theorem of the

arithmetic and geometric means or, shortly, the theorem of the means. This

theorem states that the arithmetic mean of a list of non-negative real numbers is

greater than or equal to the geometric mean of the same list; and further, that the

two means are equal if and only if every number of the list is the same. Namely

x1 + x2 + · · ·+ xn

n
≥ n

√
x1 · x2 · · ·xn (1)

and the equality holds if and only if x1 = x2 = · · · = xn.

It is simply, however, to observe that the inequality between the means yields

both of the theorems: to obtain one or the other, we have to regard one or the

other side of the inequality (1) as given. The simplest non-trivial case (i.e. with
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more than one variable) for two non-negative numbers x1 and x2 , is the statement

that
x1 + x2

2
≥
√
x1 · x2 (2)

with equality if and only if x1 = x2.

We can see that Theorem 1 is concerned with a maximum, Theorem 2 with the

corresponding minimum. We may call these two statements conjugate statements.

If we regard one or the other side of the inequality (2) as given then we get

the following theorems.

Theorem 3. The product of two positive real numbers with a given sum

becomes a minimum when these numbers are equal.

Theorem 4. The sum of two positive real numbers with a given product

becomes a minimum when these numbers are equal.

We have to mention that Pólya gave an interesting geometrical interpretation

to prove Theorem 3 (see [6]).

Theorem 5. The product p = xm
1 ·xn

2 , where x1 and x2 are two positive real

numbers with a given sum and m,n ∈ N, becomes a maximum when x1

m
= x2

n
.

Proof. The product p = xm
1 · xn

2 = mm · nn · xm

1

mm
· x

n

2

nn
becomes a maximum,

when the product
xm

1

mm
· xn

2

nn
becomes a maximum, too. We can see that

xm
1

mm
· x

n
2

nn
=

m times
︷ ︸︸ ︷
x1

m
· x1

m
· · · x1

m
·

n times
︷ ︸︸ ︷
x2

n
· x2

n
· · · x2

n

and

m times
︷ ︸︸ ︷
x1

m
+

x1

m
+ · · ·+ x1

m
+

n times
︷ ︸︸ ︷
x2

n
+

x2

n
+ · · ·+ x2

n
= m · x1

m
+ n · x2

n
= x1 + x2 = s

is the given sum, therefore the product p becomes a maximum when x1

m
= x2

n
, by

virtue of Theorem 1. �

We formulate, without any proof, the conjugate statement of Theorem 5:

Theorem 6. If the product p = xm
1 · xn

2 is given, where x1 and x2 are two

positive real numbers andm,n ∈ N, then the sum s = x1+x2 becomes a minimum

when x1

m
= x2

n
.
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We can generalize Theorem 5 as follows:

Theorem 7. The product p = xα1

1 · xα2

2 · · ·xαn

n , where x1, x2, · · · , xn are

n positive real numbers with a given sum and α1, α2, · · · , αn ∈ Q, becomes a

maximum when x1

α1

= x2

α2

= · · · = xn

αn

.

The proof of the foregoing theorem can be found in [2], so we omit its detailed

presentation.

The conjugate statement of the Theorem 7 is the following:

Theorem 8. If the product p = xα1

1 ·x
α2

2 · · ·xαn

n is given, where x1, x2, · · · , xn

are n positive real numbers and α1, α2, · · · , αn ∈ Q then the sum s = x1 + x2 +

· · ·+ xn becomes a minimum when x1

α1

= x2

α2

= · · · = xn

αn

.

2.2. Patterns and examples

Problem 1. Being given b, the length of the leg of an isosceles triangle, find

the maximum of its area!

Pattern 1: We denote the half of the base by x, the altitude of the isosceles

triangle by h, and, by virtue of the Pythagorean theorem,

h =
√

b2 − x2 (3)

follows. The area of the triangle is

A = x ·
√

b2 − x2 =
√

x2 · (b2 − x2). (4)

The area becomes a maximum when the product x2 · (b2−x2) is a maximum.

We consider the quadratic function f(x) = y · (b2 − y), where y = x2, which

becomes a maximum when x = b ·
√
2
2
. From (4) follows that the maximum

value of the area is Amax = b2

2
.

We can solve the problem almost in the same way if we choose the altitude

of the triangle as a variable element.

We have to mention that we also can get equality (4) by the use of the

Heron’s formula.

Pattern 2: The sum x2 + (b2 − x2) = b2 is given, therefore we can apply

Theorem 3. The product x2 ·(b2−x2) becomes a maximum when x2 = b2−x2

so x = b ·
√
2
2

follows.
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Pattern 3: We consider the equalities x = b · cosα and h = b · sinα (where α is

the angle between the base and the leg) therefore the area of the triangle is

A = b2 · sinα · cosα =
b2 · sin(2 · α)

2
. (5)

The area becomes a maximum, when the value of sin(2 · α) is a maximum.

Therefore α = π
4
and x = b ·

√
2
2

follows.

Pattern 4: The area of the triangle is equal to A = b2·sin γ
2

, where γ is the

angle between legs. If γ = π
2

then sin γ = 1 and the area of the triangle

becomes a maximum. The maximum value is Amax = b2

2
.

Pattern 5: The isosceles triangle can be considered as a half of a rhombus with

given side b. We know that of all rhombi with a given side the square has the

maximum area, so the maximum of the area of the triangle is Amax = b2

2
.

Figure 1

Pattern 6: The area of the ∆ABC triangle (where AB = AC = b) becomes

a maximum when the area of the ∆ABD triangle (the half of the ∆ABC

triangle) becomes a maximum. ∆ABD is a right angled triangle so we can

draw a circle on AB as diameter and D is a point of this circle by virtue of

Thales’ theorem. The area of the ∆ABD triangle becomes a maximum when

the altitude to the given hypotenuse becomes a maximum and it happens in

the case of an isosceles right triangle (see Figure 1). Therefore BD = AD =

b ·
√
2
2
.

In several problems we have to seek the extremum (minimum or maximum) of a

quantity depending on two or more variables. The simultaneous variation of all
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variables, or total variation, is not easy to survey. To solve this kind of problem

we fix for a moment all originally variable elements except one and study the effect

of the variation of this single element. The theoretical principle underlying this

pattern is: a function of several variables cannot attain a maximum (or minimum)

with respect to all its variables jointly, unless it attains a maximum (or minimum)

with respect to each single variable. As an example we introduce the following

problem.

Problem 2. In an isosceles trapezium the sum of the lengths of three sides

(two legs and a base) is given. Find the maximum of its area!

Figure 2

Pattern 1: We denote the given sum by s. Let be the first variable element

the length of a leg, denoted by x, and the second variable element the angle

between the leg and the bigger base, denoted by α = ∠ABE (see Figure 2).

Therefore the length of the smaller base is equal to s− 2 · x.
The area of the trapezium is

A = s · x · sinα− x2 · sinα · (2− cosα). (6)

In the first step we fix the variable element α and study the effect of the

variation of the element x. Since α ∈]0, π
2
[ the area becomes a maximum

when

x =
s

2 · (2− cosα)
, (7)

and the maximum value of the area is

Amax(α) =
s2

4
· sinα

2− cosα
, (8)

but, obviously, this maximum value depends on α. Since s2

4
is given, in order

to maximalize the area we have to find the value of α such that the fraction
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sinα
2−cosα

becomes a maximum. We make the substitution tan α
2
= u and we

have
sinα

2− cosα
=

2 · u
1 + 3 · u2

. (9)

The fraction 2·u
1+3·u2 becomes a maximum when its reciprocal

1 + 3 · u2

2 · u =
1

2 · u +
3 · u
2

(10)

becomes a minimum. But the product 1
2·u ·

3·u
2

= 3
4
is given, so the sum

1
2·u + 3·u

2
becomes a minimum when 1

2·u = 3·u
2
, by virtue of Theorem 2,

therefore u = 1√
3
and α = π

3
follows. The maximum value of the area is

Amax =
a2 ·

√
3

12
. (11)

Pattern 2: Let us try an other way to choose the variable elements. The first

variable remain the length of a leg, denoted by x, and the second variable

element became the length BE = z (see Figure 2).

The area of the trapezium is

A = (s− 2 · x+ z) ·
√

x2 − z2. (12)

We can see that the area becomes a maximum when the product (s− 2 · x+

z)2 ·(x−z) ·(x+z) attains its maximum. Theorem 7 seems to be an adequate

method to solve this problem. The main difficulty is there are no x nor z

values such that s− 2 · x+ z, x− z and x+ z are pairwise equal. So we have

to introduce two parameters m and n such that
s− 2 · x+ z

2
= m · (x− z) =

n · (x+ z). We have to determine the values of the parameters m and n such

that the sum

(s−2 ·x+z)+(m ·x−m ·z)+(n ·x+n ·z) = s+(m+n−2) ·x+(1−m+n) ·z (13)

be given (it depends neither on x nor on z), according to the requirements of

Theorem 7. Therefore we have

m+ n− 2 = 0 1−m+ n = 0 (14)

and the values m = 3
2
and n = 1

2
follow.

By virtue of Theorem 7, the product (s− 2 · x+ z)2 · 3 · x− 3 · z
2

· x+ z

2

becomes a maximum when
s− 2 · x+ z

2
=

3 · x− 3 · z
2

=
x+ z

2
. Therefore
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x =
s

3
and z =

s

6
follows, and the maximum value of the area is Amax =

s2 ·
√
3

12
.

Remark. We may call the foregoing pattern the method of the indetermined

parameters, as we refer to the parameters m and n, whose values, at first, were

not known.

3. Testing and results

This study was carried out with a group of 79 secondary school students in

grades 10 and 11. The two schools selected were Boronkai György Technical High

School (Vác town, Hungary) and Reformed High School from Gödöllő. Both of

the schools gather a part of the elite pupils in their region. The students have

been specially selected for this study by their teachers. All of these students

have a serious attitude towards the study of Mathematics, however they know

nothing about the differential and integral calculus. Our first task was to survey

how the students can handle extreme-value problems by elementary methods and

which are the largest deficiencies and shortcomings in their problem solving skills

concerning the extreme value problems. Every student received a test-paper with

four exercises on it, from which they had to solve only three exercises, every

student could omit an exercise (our intention also was to investigate which are

the most agreeable exercises). The exercises were chosen by the author, and the

students have 60 minutes to solve them. The students were asked to write in

detail their attempts even though they could not solve the problem entirely. The

result of the test is the following.

Exercise 1 (grade 10): Being given c = 10, the length of the hypotenuse of a

right-angled triangle, find the maximum of its area!

Exercise 1 (grade 11): Being given b = 4, the length of the leg of an isosceles

triangle, find the maximum of its area!

Table 1 shows that the grade 10 students were more successful than the grade

11 ones, but we also have to mention that their exercise was easier than the grade

11 students’ exercise. Several grade 10 students solved the exercise by the use

of the inequalities between geometric, arithmetic and square means. 2 students

used the inequality between geometric and square means:
√
a · b ≤

√
a2+b2

2
⇒

a·b ≤ 50 and the equality holds if and only if a = b =
√
50 (where a and b denotes
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Table 1

10th grade 11th grade

Right answer 34 10

Wrong answer 9 20

No response 3 3

the catheti of the triangle). 3 students solved the problem in the following way:√
a · b ≤

√
a2+b2

2
⇒ a · b ≤ 50, so the maximum value of the product a · b is

50, we solve the system of equations a · b = 50 and a2 + b2 = 100, therefore

a = b =
√
50 follows. 19 students gave the right answer without any detailed

explication: the area A = a·b
2

becomes a maximum when a = b and the equality

a = b =
√
50 follows from the phytagorean theorem a2 + b2 = 100. Two of

them gave a weak explication that the area of a rectangle with given parameter

becomes a maximum when the rectangle is a square and our triangle is a half of

a square. One student argued that all the maximum and minimum problems like

this have the solution a = b. 4 students used the inequality between geometric

and arithmetic means, one of them wrote a+b
2
≥
√
a · b ⇒ a2+2·a·b+b2

4
≥ a · b ⇒

25 ≥ 1
2
· a · b and the product a · b becomes a maximum when a = b =

√
50

. One student used the right triangle altitude theorem and his solution is the
following: A =

c·√p·q
2

= 5 · √p · q (where p and q are the two segments of the

hypotenuse) and
√
p · q ≤ p+q

2
= 5, the equality

√
p · q = 5 holds if and only if

p = q = 5, so a = b =
√
50. 5 students drew the Thales circle on the hypotenuse

as diameter, and they found that the area becomes a maximum when the altitude

to the hypotenuse is equal to the radius of the circle. In the following we detail

some wrong answers. 3 students gave the solution: a2+ b2 = 100⇒ a+ b = 10⇒√
a · b ≤ a+b

2
= 5 and the equality holds if and only if a = b = 5. Two students

thought that A = a·ma

2
(where ma denotes the altitude to the cathetus a) and the

area becomes a maximum when the cathetus a is as big as possible, one of the

students gave the answer a = 9, 99 · · · . One student wrote: a+ b > 10 (by virtue

of the triangle inequality), a = x+ 9, b = x and a = 19, b = 10 (he did not even

realise that the result refers to an isosceles triangle and not to a right angled one).

The grade 11 students had to solve Problem 1 from Section 2.2. We expected the

solutions shown in Patterns 1-6. 5 students were successful applying Pattern 4.

One student used Pattern 5 successfully. One student stated “the triangle must

be a right angled one if the area is a maximum”, without any argumentation,

and then he gave the right answer. Another student’s reasoning “Of all isosceles
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triangles the right angled one has the maximum area” and she also gave the right

answer. One student argued in the following way: if h = a
2
then h = 2 ·

√
2 and

A = 8; if h > a
2
, for example h = 2 ·

√
3 and a

2
= 2, then A = 4 ·

√
3 < 8; if h < a

2
,

for example h =
√
5 and a

2
= 3, then A = 3 ·

√
5 (here is a calculation mistake);

and suddenly he turned to the inequality
a

2
+h

2
≥

√
a
2
· h and he wrote that the

equality holds if h = a
2
, so h = 2 ·

√
2 and a = 4 ·

√
2, and the right answer follows

(the base of the triangle is denoted by a, the altitude to the base is denoted by h,

our unified notations). A complicated, but interesting answer is the following (we

show a few sequences of it): “A =
√
16 · h2 − h4 ; −y2 + 16 · y − A2 = 0 (where

y = h2); y1;2 = −16±
√
256−4·A2

−2
; y is a minimum when 256 − 4 · A2 = 0” (the

student did not explain why we have to find the minimum of the y) “⇒ A = 8

and y = 8, so h = 2 ·
√
2”. We have to mention that the correct argumentation is

the following: y is a real number so 256−4 ·A2 ≥ 0, therefore A ∈ [−8, 8] and the

maximum value of the area is Amax = 8. A lot of students wrote the Pythagorean

theorem h2 + a2

4
= 16 and then they failed. 4 students thought the area becomes

a maximum when the triangle is equilateral and made the calculation in this way.

3 students wrote that the base of the triangle is less than 8, by virtue of the

triangle inequality, so it is a = 7, 9̇. 2 students considered that the length of the

base must be equal to the length of the altitude if the area is a maximum, one of

them proceeded in the following way: a2

4
+ a2 = 16 ⇒ a =

√
64
5
⇒ Amax = 32

5
.

Exercise 2 (grade 10): Find the maximum and minimum of the function f :

[3, 7]→ R , f(x) =
√
x− 3 +

√
7− x !

Exercise 2 (grade 11): Find the maximum of the function f : [−3, 2] → R,

f(x) =
√
x+ 3 + 2 ·

√
2− x !

We expected the grade 10 students will make the transformation f2(x) = 4 +

2 ·
√

4− (x− 5)2 and, from the graph of the function g(x) = −(x − 5)2 + 4 on

domain x ∈ [3, 7], the extreme values of the function f follows. As Table 2 shows,

most of the students (27) skip over this exercise. One student could solve the

exercise in the way which we expected.

Table 2

10th grade 11th grade

Right answer 8 6

Wrong answer 11 17

No response 27 10
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Another student tried to apply this method but the result was the following:

f2(x) = 4+2 ·
√
−x2 + 10 · x− 21; (squaring once again) f4(x)− 8 · f2(x)+ 16 =

−4 · x2 + 40 · x − 84 and the student did not know how to continue. 3 students

plotted the graph of the functions x →
√
x− 3 and x →

√
7− x in the same

coordinate system and they gave the right answer (they found the minimum and

maximum points with the help of the graph and thereafter they calculated the

corresponding minimum and maximum values). 4 students solved the equation√
x− 3 =

√
7− x, thereafter they considered the maximum point is x = 5 (the

solution of the equation) and the corresponding maximum value is f(5) = 2 ·
√
2,

one of them gave the right answer concerning the minimum points of the function

without any argumentation. We can say that these students found the right

answer somehow accidentally. Another student gave the right answer accidentally,

too, when he tried to use the inequality between arithmetic and geometric means

and his argumentation is the following: the function f becomes a maximum when
the equality

√
x−3+

√
7−x

2
= 4

√

(x− 3) · (7− x) holds and (he solved the equation)

x = 5 (and then he calculated the maximum value of the function). This student’s

argumentation concerning the minimum of the function was the following: to find

the minimum we use the inequality a2+b2

4
≥ a+b

2
and the substitutions a =

√
x− 3

and b =
√
7− x leads us to the inequality 1 ≥

√
x−3+

√
7−x

2
; the function becomes

a minimum when the equality 1 =
√
x−3+

√
7−x

2
holds (a misinterpretation of the

inequality between arithmetic and square means) and we get x = 3 and x = 7

(thereafter he calculated the corresponding minimum values). If we trace this

train of thought carefully we can conclude that this student has some knowledge

about the inequality between arithmetic, geometric and square means, but he

does not know how to use properly this knowledge. 8 students wrote that the

minimum and maximum value of the function are 3 and 7 respectively (they took

the extreme values of the domain for the extreme values of the function).

Grade 11 students had no previous knowledge on how to solve Exercise 2.

Our target was to survey how they can handle this kind of problem. We expected

that most of the students will omit this exercise, but this did not happen, as Table

2 shows. 6 students tried to calculate the values of function in several points of

the domain and 4 of them gave the right answer (in the case of 2 students the

set of values did not contain f(−2) so their answers were wrong). One student’s

work is the following (the others worked almost in the same way): “the domain

of the function is x ∈ [−3, 2], f(−3) = 2 ·
√
5; f(−2) = 5; f(−1) =

√
2 + 2 ·

√
3;

f(0) = 2 ·
√
2 +

√
3; f(1) = 4; f(2) =

√
5; so the maximum value of the function

is 5 and the maximum point is x = −2”. Two students plotted the graph of the
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functions x →
√
x+ 3 and x → 2 ·

√
2− x (in the same coordinate system), and

thereafter one of them calculated the value f(−2) and wrote this is the maximum

value of the function (he made conjectures with the help of the graph), the second

one calculated f(−2) = 5 and f(−3) = 2 ·
√
5 and she gave the right answer (she

also wrote that one of the values f(−2) and f(−3) must be the maximum of

the function, because 2 ·
√
2− x is more significant than

√
x+ 3 ). 2 students

wrote that the maximum value is f(2) =
√
5 because x = 2 is the maximum

of the domain. One student thought that the maximum point of the function

must be x = −3 or x = 2 (the marginal points of the domain) so the maximum

value is f(−3) = 2 ·
√
5. One student solved the equation

√
x+ 3 = 2 ·

√
2− x

and he concluded that the maximum point is x = 1 and the maximum value is

f(1) = 4. Other student thought that the maximum point of the function is the

solution of the equation
√
x+ 3 + 2 ·

√
2− x = 0 and she also made mistakes

in the equation solving procedure. One student tried to find the maximum of

the function f2(x) (she obtained f2(x) = 11 − 3 · x + 4 ·
√

(x+ 3) · (2− x)),

other student found the function f4(x) (by a double squaring), but both of them

did not know how to handle these complicated expressions. One student stated

f2(x) = x + 3 + 4 · (2 − x) ⇒ f2(x) = −3 · x + 11 (wrong squaring) and he

determined the maximum value of f2(x) = −3 ·x+11 on the domain x ∈ [−3, 2],
namely f2(−3) = 20, and he got the maximum value fmax = f(−3) =

√
20.

Exercise 3 (grades 10 and 11): Find the maximum of the product a·b where
a+ 2 · b = 4 and a, b ≥ 0!

Table 3

10th grade 11th grade

Right answer 20 12

Wrong answer 20 17

No response 6 4

5 grade 10 students and 2 grade 11 students considered the product a · b as a
quadratic function f(b) = −2 · (b− 1)2 +2, the maximum point of the function is

at b = 1 and the maximum value of the function is f(1) = 2 (one of our expected

answers). One grade 11 student stated that a+2·b
2

≥
√
a · 2 · b ∀a, b > 0 (and the

equality a+2·b
2

=
√
a · 2 · b holds if and only if a = 2 · b), he solved the system of

equations a + 2 · b = 4; a · 2 · b = 4 and finally he gave the right answer. Other

grade 11 student considered the system of equations a · b = x ; a+ 2 · b = 4 and

she get to the quadratic equation −2 · b2 + 4 · b − x = 0; she stated the value of
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x becomes a maximum when the discriminant of the equation is equal to 0, so

16−8·x = 0 and x = 2 follows. We have to mention that the proper and complete

reasoning is: if b is a positive real number then the discriminant of the equation

must be a non-negative number so 16 − 8 · x ≥ 0 and x ≤ 2 follows, therefore

the maximum value of x is 2. 7 grade 10 students and 5 grade 11 students gave

certain values to the variable elements a and b (values which satisfy the a+2·b = 4

condition) then they analized the values of the product a ·b in order to find out its

maximum value (all of them gave the right answer), for example here is one grade

10 student’s solution: “a = 1, b = 1, 5 ⇒ a · b = 1, 5; a = 2, b = 1 ⇒ a · b = 2 ;

a = 3, b = 0, 5 ⇒ a · b = 1, 5 ; a = 3, 2, b = 0, 4 ⇒ a · b = 1, 28 ; a = 3, 8, b =

0, 1 ⇒ a · b = 0, 38 ; so we can see that the product is a maximum when a = 2

and b = 1 and the maximum value is a · b = 2 ′′. 8 grade 10 students and 3 grade

11 students gave the right answer without any argumentation, or with a weak

reasoning like this (one grade 10 student argued in this way): “if the product is

a maximum both of a and b must be no less then 1, so a = 2 , b = 1 and the

maximum of the product is a · b = 2”. 6 grade 10 students obtained a = b = 4
3

and a · b = 16
9

making the following typical mistake: a · b becomes a maximum

when a = b and, from the condition a+ 2 · b = 4, a = b = 4
3
follows (two of them

explained that the equality
√
a · b = a+b

2
holds if and only if a = b). The same

result was obtained by 4 grade 10 students in the following way (we trace one

student’s work): “the product becomes a maximum if the equality
√
a · b = a+b

2

holds, so
√

(4− 2 · b) · b = 4−2·b+b
2

follows; then (after some calculations) we get

9 · b2 − 24 · b+ 16 = 0 and b = 4
3

follows” (although they have failed we can see

that grade 10 students know more about the inequality between means than the

grade 11 ones). Almost in the same way one grade 11 student solved succesfully

the system of equations
√
a · b = a+b

2
and a + 2 · b = 4 . One grade 10 student’s

interesting approach was: we have to divide number 4 in three equal parts, so

4 : 3 = 1, 3̇ , therefore a = 1, 3̇ and b = 2, 6̇ (he omits to check as well) and the

maximum of the product is a · b = 1, 6̇ · 2, 6̇ = 3, 5̇ . One grade 11 student found

out that this problem is analogous with the following one: we wish to maximize

the area of a pen, a is the length of the pen, b is the width of the pen, and the

total amount of fencing is given to be a+2 ·b = 4, because the pen is situated near

a river (and we do not build any fencing on this side); but this student made the

mistake a = b (as others did) and he found Amax = 16
9

. Many students realized

that they have to find the maximum value of the f(b) = 2·b·(−b+2) function, but

they did not know how to continue, although this is a simple quadratic function.
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Figure 3

Exercise 4 (grades 10 and 11): The length of the sides of a rectangleABCD

are AB = 10 cm and BC = 6 cm , respectively. On the sides of the rectangle

we consider the points E, F , G and H such that CE = CF = AH = AG = x

(see Figure 3). Find the maximum of the area of the parallelogram EFGH!

Our expected answers were the following:

Pattern 1: The area of the parallelogram is A = 60− x2 − (10− x) · (6− x) =

2 · x · (−x + 8) . This quadratic function has the maximum point x = 4 and

its maximum value is f(4) = 32 .

Pattern 2: We use the inequality between geometric and arithmetic means:

√

x · (−x+ 8) ≤ x+ (−x+ 8)

2
= 4

so A ≤ 32 and Amax = 32 follows.

Pattern 3: The sum x+(−x+8) = 8 is given so we can apply Theorem 3 from

Section 2.1. Therefore the product x · (−x + 8) becomes a maximum when

x = −x+ 8 and so x = 4 follows.

Table 4

10th grade 11th grade

Right answer 6 1

Wrong answer 32 16

No response 8 16

As Table 4 shows the grade 10 students were more succesfull than the grade

11 ones. 6 grade 10 students used Pattern 1 and solved the problem properly.

The rest of the students omited this problem or gave wrong answers. One student
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wrote: the area of the parallelogram is A = 60−x2−(10−x) ·(6−x) and this area

becomes a maximum when x2+(10−x) · (6−x) becomes a minimum (and he did

not know how to continue). Another student wrote A = 60− x2 − (10− x)2 (she

considered all of the triangles are isosceles) thereafter she made the calculations

properly, but she gave a wrong answer due to the wrong formula. 2 students

thought that the area becomes a maximum when the length of the side EF

of the parallelogram becomes a maximum so x = 6. 2 students wrote that F

must be the midpoint of the segment CD if the area of the parallelogram is a

maximum; 3 students considered that E must be the midpoint of the segment

BC when the maximum of the area is attained. 3 students thought the area

is a maximum when the parallelogram becomes a rhombus, so GH = GF and

they solved the equation x ·
√
2 =

√

(10− x)2 + (6− x)2 and they got x = 4, 25.

Other student argued: “the area becomes a maximum when the parallelogram

becomes a rectangle and of all rectangles the square has the maximum area”; he

also solved the equation x ·
√
2 =

√
2 · x2 − 32 · x+ 136 and he got x = 4, 25

(this student knows some rules concerning the extreme value problems, but he

does not know how to apply this knowledge and he did not check the validity of

his statements). Other student’s interesting, but lacunary argument: if F is the

midpoint of the segment CD then x = 5; if E is the midpoint of the segment BC

then x = 3; the area becomes a maximum when x is equal to the arithmetic mean

of these two values so x = 5+3
2

= 4 . One student considered certain x values

and calculated the corresponding values of the area: “x = 2 cm→ A = 24 cm2 ;

x = 3 cm→ A = 28 cm2 ; x = 4 cm→ A = 32 cm2” and she conclude “the area

becomes a maximum when x = 4 cm and the maximum value is Amax = 32 cm2 ”

. Another student argued in the following way: “a · b = max if a = b, this means

the parallelogram becomes a square; it is not possible; so
√
a · b ≤ a+b

2
⇒√

a · b ≤
√
2·x2+

√
2·x2−32·x+136

2
” ; at this step she abandoned.

The grade 11 students’ works were weaker than those of the grade 10 students.

Only one grade 11 student gave the right answer, his solution is the following:

A = 60−x2−(6−x)·(10−x) = −2·x2+16·x = −2·(x−4)2+32, then he sketched the

graph of the function f(x) = −2·(x−4)2+32 and gave x = 4 and Amax = 32. One

student wroteA = 60−2·x2−2·(6−x)·(10−x) = −4·x2+32·x−60 (wrong formula);

then he solved the equation −4 · x2 + 32 · x− 60 = 0 and got x1 = 3 and x2 = 5

; then x = 5+3
2

= 4 and Amax = 4 followed. One student wrote that the area

becomes a maximum when x is as small as possible, so x = 0. Other student gave

the value of x in a strange way: A = (10−2 ·x) ·(6−2 ·x) = 60⇒ 4 ·x2−32 ·x = 0;

the roots of the equation are x1 = 0 and x2 = 8 and the area becomes a maximum
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when x = 0+8
2

= 4 . 5 students got the formula A = −2 · x2 + 16 · x but they did

not know how to continue. The rest of the students just started the work (they

made a picture or wrote one or two formulas) and they gave up, so it is not worth

to present their works.

4. Summary and Conclusions

Based on the evaluation of the answers we have come to some conclusions.

The maximum and minimum problems are difficult enough for secondary school

students, this fact is seen in the large number of wrong answers. Also, we can

see that the grade 10 students’ results were slightly better than the results of

the grade 11 ones. Besides efficienty, the grade 10 students apply more adequate

methods than the grade 11 ones to solve the extreme value problems. In our

opinion, this is due to the fact that the curriculum for grade 11 students does not

prescribe any kind of maximum-minimum problem solving, these kind of exercises

were not practiced for over a year.

A large number of students think that an extreme value problem somehow

involves the equality of two quantities, so they search for two quantities which

must be equal and they often give erroneous results. The main cause of these

errors is the misinterpretation of the basic inequalities between arithmetic, geo-

metric and square means. We can also say that the students textbooks mostly

deal with extremum problems where the equality between two or more quantities

delivers the right answer (see [1] and [3]). To make an improvement in this sense

we consider it is necessary to deal with problems like Exercise 3 and 4 from Sec-

tion 3, in the secondary school educational processes. Many students gave the

right answer after they calculated the value of a function or expression for several

certain values of the variable. This is an eloquent proof that most of them did not

find any way to solve the problem and they ultimately appealed to this lacunary

method. The students face difficulties when they have to synthetize knowledge

concerning functions, algebraic expressions or geometry. It is also difficult for

them to find analogous problems to the just discussed problem.

In our opinion a serious improvement is necessary in the extreme value prob-

lem solving activities. It is necessary to inlarge the number of methods which

are adequate to solve extreme value problems (we have shown some of them in

Section 2, others can be found in [2], [5] and [6]). It is also necessary to deal with

a greater variety of problems, not only those focused on the inequalities between

means. And, after all, the extrem value problems have their rightful place in
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almost every chapter of the secondary school Mathematics education, not only in

the grade 10 curriculum.
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