
“04-wirth” — 2015/5/22 — 0:07 — page 57 — #1

13/1 (2015), 57–71

The far side of recursion

Michael A. Wirth

Abstract. Recursion is somewhat of an enigma, and examples used to illustrate the
idea of recursion often emphasize three algorithms: Towers of Hanoi, Factorial, and
Fibonacci, often sacrificing the exploration of recursive behavior for the notion that a
“function calls itself”. Very little effort is spent on more interesting recursive algorithms.
This paper looks at how three lesser known algorithms of recursion can be used in
teaching behavioral aspects of recursion: The Josephus Problem, the Hailstone Sequence
and Ackermann’s Function.

Key words and phrases: recursion, problem solving, Josephus, Hailstone, Ackermann.

ZDM Subject Classification: M50, D40, P50.

1. Introduction

Recursion in programming textbooks often exists as the quintessential tri-

umvirate: Towers of Hanoi, Factorial, and Fibonacci. Hardly inspiring, as al-

though they have their place in teaching recursive problem solving, after numer-

ous decades they have become rather hackneyed and offer a limited vision of

recursion. Recursion offers an exceptional example of problem solving through

the principle of divide-and-conquer, calving a problem into smaller subproblems,

solving them independently and combining their solutions to arrive at a solution

to the original problem. The problem is that repeated use of any one particular

algorithm may cause it to wear out. This may prompt students to gloss over the

algorithms intrinsic value because the code is too run-of-the-mill. Fibonacci is a

good example - no one questions the viability of the recursive algorithm because it

Copyright c© 2015 by University of Debrecen

“04-wirth” — 2015/5/22 — 0:07 — page 58 — #2

58 Michael A. Wirth

is so pervasive in the literature. In fact, Fibonacci offers a good counter-example

of recursion, at least in the context of the binary recursive version most often pre-

sented in the literature. It works well for low values, but suffers computationally

when faced with large values due to the number of re-calculations performed. In

short it is inefficient, but because few introductions to recursive algorithms talk

about the stack, it is more difficult for students to comprehend why it is ineffi-

cient - due in part to the tree-based topology of the recursive algorithm. There

are linear versions of the Fibonacci algorithms, but they are rarely discussed [31].

Factorials, whilst being simple in the context of linear recursion, are limited by

the size of the factorial which can be calculated. In the classic book by Niklaus

Wirth Algorithm + Data Structures = Programs [33], he cites both Fibonacci

and Factorial as examples of when not to use recursion and to “avoid the use

of recursion when there is an obvious solution by iteration”. As both Fibonacci

and Factorial can be trivially derived using iteration, students often walk away

thinking recursion is a half-baked idea - “a dangerous and unpredictable method”

in the words of Kruse [13]. The last of the trinity, Towers of Hanoi may not be

very appropriate for a novice programmer, because although the problem seems

easy, and the solution exudes elegance, trying to explain the solution is far more

convoluted. That, and there are iterative solutions [9] which may make more

sense in the first instance. Illustrative examples used in teaching recursion should

possess some qualities that relate to recursive behaviors.

This paper explores the realm of three lesser known algorithms used for illus-

trating recursion: The Josephus Puzzle, the Hailstone Sequence and Ackermann’s

Function. These particular algorithms were chosen in part due to their recursive

behaviors and also due to their historical significance in the computer science

literature. In a survey of fourteen textbooks on C, the top four algorithms en-

countered were factorial (10), Fibonacci (5), Towers of Hanoi (4), and calculating

a numeric sum (3). Other algorithms occur only once or twice include: greatest

common divisor, recursive π, counting backwards, binary search, printing a line

backwards, power, Quicksort, and directory traversal. None covered any of the

three algorithms discussed in this paper. The three problems described offer a

different viewpoint on solving problems in a recursive manner. None of them has

any real practical application, however they can be used to illustrate many of the

characteristics and behaviors of recursion.

“04-wirth” — 2015/5/22 — 0:07 — page 59 — #3

The far side of recursion 59

2. The Pedagogy of Recursive Algorithms

Recursion is not a trivial topic, and is often considered to be one of the more

difficult concepts for students to both understand [2, 10], and apply as a prob-

lem solving strategy [24, 11]. Whilst students often gain an understanding of

programming concepts from everyday analogies, recursion offers very few such

analogies [17, 30]. What does teaching recursion instruction involve? Recursion

is more complex than simply having a function call itself - yet this is the intrinsic

behavior portrayed in many textbooks. Using recursion as a means of solving

a problem alludes to exploring a cornucopia of things: the idea of a stack and

how it underpins recursion; the various forms of recursion (e.g. linear, binary,

mutual, nested), and the effect of recursion on resources (computational time,

memory). Too often recursion is taught by diving into a recursive piece of code,

giving little weight to the rationale for using a recursive approach to the problem,

its behavior, or its optimality. Textbooks present recursive algorithms in their

polished forms, often ignoring the problem solving aspects [6]. Due to this stu-

dents often exhibit little confidence in deriving a recursive solution from scratch,

and a general indifference towards recursion as a problem solving methodology.

Eric Roberts posed that “In order to develop a more complete understanding

of the topic, it is important for the student to examine recursion from several

different perspectives” [18]. In this light recursion should be introduced in a

multi-tiered format [32], whereby aspects of recursion are disseminated at differ-

ent points throughout the curriculum. At the lowest level, this involves exploring

recursion as a physical phenomenon, and how it can be used to create visual

patterns (e.g. Sierpinski triangles). Then the notion of the stack can be intro-

duced, and simple algorithms which can be explained using iterative means are

re-engineered using recursion. A number of papers discuss the importance of

learning to solve problems by means of iteration prior to introducing recursion

[3]. Approaching the problem using an iterative solution, allows the student to

leverage existing knowledge. Exploration of the stack - the data structure which

reinforces the mechanism of recursion - provides a notion of how recursion works

in the machine. This leads to a discussion of the types of recursion (e.g. lin-

ear, binary), and the exploration of puzzle-like algorithms such as the Josephus

puzzle, which can be solved using iterative solutions (eg. a circular array), and

extend them to recursive solutions. Such problems can also be illustrated in a

physical-tactile manner. At the intermediary level, a discussion on the resources

“04-wirth” — 2015/5/22 — 0:07 — page 60 — #4

60 Michael A. Wirth

associated with recursion can be raised. This is where both the Hailstone Se-

quence and Ackermann’s function (as well as the resource hog - binary Fibonacci)

play a role - exploring processor time, stack space, and the trade-offs of recur-

sive versus iterative algorithm versions of the algorithms . Once students have a

good understanding of the behaviors associated with recursion, more challenging

problems can be attempted, (e.g. Quicksort, Towers of Hanoi) and the notion of

tail-recursion can be introduced. Finally, advanced topics can be cracked open -

maze traversal, Sudoku, 8-Queens, and the task of removing recursion.

3. The Josephus Puzzle

The Josephus puzzle originates from Roman historian Flavius Josephus (37-

100). It was mentioned in modern times by W.W. Rouse Ball in his book entitled

“Mathematical Recreations and Essays” [22], first published in 1892. In the

section on antique problems he discusses the idea of decimation, a not uncommon

punishment in the early Roman Army. Rouse Ball cites the work of Hegesippus,

who authored a Latin adaptation of the Jewish War of Josephus, under the title

De bello Judaico et excidio urbis Hierosolymitanae. During the Roman-Jewish

conflict of AD67, the Romans captured the town of Jotapata. Josephus and

forty companions escaped and took refuge in a cave. Josephus discovered that all

but himself and another man were resolved to kill themselves to prevent being

captured by the Romans. Fearing to show their opposition too openly, they

declared that the operation should be carried out in an orderly way, and suggested

that they should arrange themselves in a circle and that counting around the

circle, every third person should be killed until until there was only one survivor,

who would kill himself. It is alleged that he placed himself and the other man in

the 31st and 16th place respectively, thus saving their lives. The Romans spared

Josephus, and he later became a Roman citizen.

The puzzle involves finding the position of the last survivor, and can be

expressed as follows: A group of n people are standing in a circle, numbered

consecutively clockwise from 1 to n. Starting with the first person, every kth

person is removed, proceeding clockwise. The task is to determine the position

of the remaining survivor, Jk(n). For example, if n=6, and k=2, then people

are removed in the following order 2, 4, 6, 3, 1, and the last person remaining

is number 5. The process of removing people is known as reduction using a step

of size k [19]. The puzzle was first generalized by Euler in 1775 [7], and British

scientist P.G. Tait introduced a general algorithmic rule for the Josephus puzzle

“04-wirth” — 2015/5/22 — 0:07 — page 61 — #5

The far side of recursion 61

in 1898 [26]. The puzzle was first cited in an algorithmic context by Knuth in 1968

[12] who explored a formula for k=2. A formula can be derived for the position

of the last person, values of the sequence Jk(n), for a circle of n participants, in

which evert kth participant is eliminated. For example J2(16) proceeds in the

following fashion:

Figure 1. An example of J2(16) from a reduction viewpoint

The answer is 1 for any value of n which is a power of 2, because the sub-problem

is always a multiple of 2. The recursive “breaking down” of the problem is clearly

illustrated. A value of n which is not a power of 2 is more challenging - for there

are now two possibilities, n being odd or even.

Figure 2. Even (2n) and odd (2n + 1) number of participants after
the first round of elimination

If there are only 2n people at the beginning, then after the first cycle, only the

odd numbers are left. The next person to eliminate will be 3 (Fig.2 left). This

is similar to the original, except that with n people removed, a new enumeration

“04-wirth” — 2015/5/22 — 0:07 — page 62 — #6

62 Michael A. Wirth

ensues where each persons number is doubled and decreased by 1. This is the case

used when n is a power of 2, as each subproblem is guaranteed to have an even

number of people. Consider the example shown in Fig.3, showing the winding

and unwinding of the recursive process.

Figure 3. An example for J2(16)

Alternatively, if there are 2n+1 people originally, the persons numbered 2, 4,

6,...,2n, and 1 are eliminated, leaving all odd numbers except 1 (Fig.1 right). In

this case the new numbers are doubled and increased by 1. Combining these two

situations, and including the base case, the following recurrence relation evolves:

J2(2n) = 2J2(n)− 1(n ≥ 1)

J2(2n+ 1) = 2J2(n) + 1(n ≥ 1)

J2(1) = 1

This can be easily transformed into a recursive function. Consider the following

function in C.

i n t josephus (i n t n)

{

i f (n == 1)

re turn 1 ;

i f (n % 2 == 0)

re turn 2 ∗ j o sephus (n / 2) − 1 ;

e l s e

re turn 2 ∗ j o sephus (n / 2) + 1 ;

}

A more generic solution which works for any value of n and k, can be formed in

an iterative manner:

i n t j o s ephus I (i n t n , i n t k)

{

i n t i , pos=1;

“04-wirth” — 2015/5/22 — 0:07 — page 63 — #7

The far side of recursion 63

f o r (i =1; i<=n ; i=i +1)

pos = (pos + k) % i ;

r e turn pos ;

}

This calculates r as the position of the last remaining person (starting at position

0) by cycling through each value of i. This can easily be converted to a recurrence

relation which starts with n, and cycles back:

f (1 , k) = 0

f (n , k) = (f (n−1,k) + k) mod n

This provides students with experience converting an iterative construct into a

recurrence relation, which can then be implemented as a recursive function (with

a starting position of 0):

i n t josephusR (i n t n , i n t k)

{

i f (n == 1)

re turn 0 ;

e l s e

re turn (josephusR (n−1, k) + k) % n ;

}

The Josephus puzzle provides a good transition from an iterative algorithm to a

recursive algorithm. Many recursive problems are more challenging to solve in

a non-recursive manner, however due to it’s circular nature Josephus is not that

difficult using a circular array, or circular linked list. Josephus has been used by

Eusebi [8] to illustrate recursion in APL2, and by Augenstein and Tenenbaum [4]

as an example of program efficiency using arrays, lists and tree structures. The

Josephus puzzle can also be used in the context of kinesthetic, or tactile learning,

a process in which students learn by actively carrying out physical activities rather

than by passively listening to lectures [23]. In this situation, students can either

play with the puzzle in the manner of a board game, or perform an activity such

as having students stand in a circle and re-enact the puzzle by counting-out aloud.

Kinesthetic activities offer a way to enhance the understanding of the problem so

that students can derive an algorithmic solution to the puzzle.

“04-wirth” — 2015/5/22 — 0:07 — page 64 — #8

64 Michael A. Wirth

4. Hail Stone Sequence

The January 1984 issue of Scientific American contains an article on a se-

quence of numbers known as a the hailstone sequence, but also known as the

Collatz Conjecture, the 3n+1 problem, the Syracuse problem, Hasse’s algorithm,

and Kakutani’s problem. It is credited to German mathematician Lothar Collatz

in 1937, however Collatz did not publish anything on the conjecture until 1986

[5], stating that he did not publish anything earlier because he could not solve the

problem. The Collatz Conjecture states that “starting from any positive integer

n, repeated iteration of [the Collatz function] eventually produces the value 1”

[14]. This has been shown for every number just shy of 260 [21]. The series is

formed using the following algorithm:

(1) Pick a number.

(2) If it’s odd, triple the number and add one.

(3) If it’s even, divide the number by two.

Why is the sequence likened to a hailstone? It is so named because the values

are subject to multiple ascents and descents, akin to hailstone formation in a cloud

[16]. Also, once the value hits a power of two, it moves towards termination in a

rapid manner, as does a hailstone. As a function it can be defined in the following

manner:

f(n) =

{

n/2 if (n mod 2) = 0

3n+ 1 if (n mod 2) = 1

For example, starting with n = 11, the sequence takes longer to reach 1: 11,

34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. In reality, it has no real world

application, but it provides an interesting exercise in the structure of recursion.

Naturally, this problem can also be solved using iteration. Consider the following

iterative function, which takes the number as input, and rolls out the sequence.

void h a i l s t o n e I (i n t x)

{

p r i n t f (”%d ” , x) ;

whi l e (x != 1)

{

i f (x % 2 == 1)

x = 3 ∗ x + 1 ;

“04-wirth” — 2015/5/22 — 0:07 — page 65 — #9

The far side of recursion 65

e l s e

x = x / 2 ;

p r i n t f (”%d ” , x) ;

}

}

Recursively, it is also easy to define, because the task of deriving a hailstone series

is involved with processing a number a series of times until its value turns to 1.

void ha i l s toneR (i n t x)

{

p r i n t f (”%d ” , x) ;

i f (x != 1)

i f (x % 2 == 1)

ha i l s toneR (3∗x+1);

e l s e

ha i l s toneR (x /2) ;

}

Both the iterative and recursive algorithms offer good solutions to deriving the

hailstone series. Is one better than the other? If we work on the pretext that the

algorithms stop after the sequence 4, 2, 1 is reached, then both work reasonably

well. In this case it just relates more to computational overhead than anything

else. If the value of x is set to 84, then the hailstone series calculated is:

84 , 42 , 21 , 64 , 32 , 16 , 8 , 4 , 2 , 1

Iteratively this involves executing the loop nine times, with the use of one local

variable (x), and very little arithmetic overhead. Recursively, there are 10 calls to

the function hailstoneR, each one creating its own instance of the local variable

x. Run it with x=57, and we get

57 , 172 , 86 , 43 , 130 , 65 , 196 , 98 ,

49 , 148 , 74 , 37 , 112 , 56 , 28 , 14 ,

7 , 22 , 11 , 34 , 17 , 52 , 26 , 13 ,

40 , 20 , 10 , 5 , 16 , 8 , 4 , 2 , 1

Iteratively, this uses approximately the same resources as for x=84, recursively

though it’s another story. There are now 33 calls to hailstoneR, with 33 instances

of x. For x=73, there are 116 calls to hailstoneR, with 116 instances of x. Now

a pattern begins to emerge. The recursive solution begins to draw on extraneous

resources. To better see the effect we have to run the programs with the final

“04-wirth” — 2015/5/22 — 0:07 — page 66 — #10

66 Michael A. Wirth

sequence 4, 2, 1 repeating continuously. For the iterative solution there is no

problem, it will likely iterate to infinity and beyond. When the recursive solution

is run, the program eventually crashes.

Compiling the code in C in Xcode results in the following message, “Loading

262039 stack frames”, followed by the debugger being initiated, and implying that

the upper limit of recursive calls was reached. Each time we call a function, it’s

address is put in a stack, which is used to manage the function calls. When we

run hailstoneR for the first time, it is pushed on to the stack. It isn’t taken

off until the last call the hailstoneR is reached, and they are all popped from

the stack. Since the are 262,039 instantiations of hailstoneR on the stack, it

overflows and the program crashes. This is a great example of stack overflow

caused by excessively deep recursion, or in this case infinite recursion, because

the program will recurse ad infinitum. Apart from a lesson in the use of stacks,

it is also beneficial to experiment with how different compilers/languages deal

with infinite recursion. The program is compiled with gcc, and similar programs

are compiled with Python, and Fortran. Compilation with another C compiler

(gcc) or Fortran (gfortran) results in the pervasive catch-all “Segmentation fault”,

which really does not provide much feedback for the user. Python returns with

“RuntimeError: maximum recursion depth exceeded”, implying the interpreter

restricts the depth of the stack (typically 1000 frames).

Due to its mutually exclusive nature, Hailstone is also a good candidate to

illustrate the notion of mutual recursion, whereby one of more functions call each

other. A simplistic example is shown below which uses two additional functions to

perform the tasks of calculating the hailstone sequence. The function hs mutual

calls either hs odd or hs even depending on whether x is odd or even. The

function called then calls hs mutual in turn, which again calls the appropriate

mutual function, and so on.

i n t hs mutual (i n t x)

{

p r i n t f (”%d ” , x) ;

i f (x != 1)

i f (x % 2 == 1)

re turn hs odd (x) ;

e l s e

re turn hs even (x) ;

}

“04-wirth” — 2015/5/22 — 0:07 — page 67 — #11

The far side of recursion 67

i n t hs even (i n t x)

{

r e turn ha i l s t one mutua l (x /2) ;

}

i n t hs odd (i n t x)

{

r e turn ha i l s t one mutua l (3∗x+1);

}

5. Ackermann’s Function

Ackermann’s function was originally conceived in 1928 by Wilhelm Acker-

mann [1], and has been used extensively in the past for studies in computational

efficiency [27]. Ackermann considered a function of three variables A(m,n, p),

the “p-fold iterated exponentiation of m with n”, a recursive function which is

not primitive. This was later simplified by both Peter and Robinson [15, 19] to

the more common two-variable definition. It is interesting partially because of

its highly recursive nature, and does not require large integer values. Its limi-

tation? - it doesn’t really have any applications, apart from being used in the

early development of systems/languages as a means of measuring performance.

Sundblad [25] used Ackermann’s function to explore various implementations of

Algol, PL/I and Simula on various operating systems, whereas Wichmann [27]

described the performance of Ackermann’s function on 35 language/system pairs.

This was followed by a study in 1977 [28], and another extensive one in 1982 [29].

Ackermann’s function has the following recurrence relation:

A(m,n) =

n+ 1 if m = 0 and n ≥ 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

How does it work? Consider the calculation of A(1,2):

A(1 , 2)

= A(0 , A(1 , 1))

= A(0 , A(0 , A(1 , 0)))

“04-wirth” — 2015/5/22 — 0:07 — page 68 — #12

68 Michael A. Wirth

= A(0 , A(0 , 2))

= A(0 , 3)

= 4

This seems simple, but the largerm and n become, the more complex the recursion

becomes. One of the most interesting aspects about Ackermann’s function is

that it performs very little computation apart from the computation of A(m,0),

and the recursive calls. It grows very quickly (even for small values of m and

n, Ackermann(m,n) is extremely large) and it cannot be computed with only

definite iteration (a completely defined for loop for example); it requires indefinite

iteration (i.e., recursion). It can be solved iteratively using a complex stack - but

this makes it limiting. A C function to implement Ackermann’s function is given

as follows:

i n t ackerman (i n t m, i n t n)

{

i f (m == 0)

re turn (n+1);

e l s e i f (n == 0)

re turn (ackerman (m−1 ,1)) ;

e l s e

re turn (ackerman (m−1,ackerman (m, n−1))) ;

}

One of the more interesting aspects of Ackermann, from a resource perspective is

that it takes some time to run, unlike many contemporary algorithms. In the early

days of computing, writing efficient code was extremely important, but many al-

gorithms which once showed different run-time profiles now are milliseconds apart

- using Ackermann provides students with a better understanding of program ef-

ficiency, and the notion of depth of recursion. For example Ackermann(3,2) pro-

duces a recursive depth of 30. Ackermann also introduces the notion of nested or

embedded recursion. For a more advanced exploration of Ackermann, it is possible

to derive (i) a non-recursive algorithm, or (ii) a tail-recursive solution, and com-

pare them to the basic recursive solution. Such experimentation amongst both

different types of recursive approaches, and iterative versions allows students to

explore resource hogging. For example, to calculate Ackermann(4,1)=65533 using

recursion on a 2.5 GHz Intel Core i5 takes 24.4 seconds. The same algorithm run

with the nonrecursive algorithm using a stack and unstructured jumps [20] takes

81.59 seconds. A tail-recursive version of the function runs at 17.79 seconds. A

“04-wirth” — 2015/5/22 — 0:07 — page 69 — #13

The far side of recursion 69

second non-recursive version of Ackermann which uses a stack, but no goto state-

ments runs in 50.82 seconds. Students gain a greater understanding of the effect

of different algorithms on computational efficiency.

6. Discussion

There is nothing inherently new about these recursive algorithms, but they

have been somewhat neglected in the context of teaching recursion. In the case

of the Josephus Problem, the core problem can be illustrated in both a visual

and kinesthetic manner, can be solved iteratively, and then extended to form a

recursive solution. Whilst offering a good visual analogy and an example of lin-

ear recursion, it also provides differing levels of difficulty. The Hailstone sequence

offers a good comparison of the resources involved in iterative versus recursive

solutions. It also introduces the notion of stacks and their role in recursion: stack

overflow, stack frames and infinite recursion. In addition the recursive solution

can be easily morphed to one illustrating mutual recursion. Ackermann’s function

has been extensively used in the past in the context of benchmarking. Nowadays

it is often overlooked, but apart from introducing the concept of nested recur-

sion, it also explores resource handling. Why does this matter? Many of the

approaches to teaching recursion fail to discuss underlying mechanisms such as

the stack, make very little comparison with iterative methods, and blindly dis-

cuss singular approaches to recursive algorithms. Apart from learning to translate

from iteration to recursion, it may be just as important to learn how to remove

recursion. Ackermann is more complicated than traditional recursion examples,

and therefore offers more challenges for recursion removal. Ironically, whilst deal-

ing with linear, mutual and nested forms of recursion, none of these algorithms

deals with binary recursion. In truth, binary recursion used in examples such as

Tower of Hanoi can be challenging to understand, especially until students can

fully comprehend the tree-like structure of the recursive calls.

7. Conclusion

Recursion is not just a way of coding problems, it doesn’t exist in a vacuum

where a “function calls itself” to some end. It is a method of solving problems,

which regardless of the applicability of a particular problem to real world scenar-

ios, requires a student to think outside the box. This involves an exploration of

“04-wirth” — 2015/5/22 — 0:07 — page 70 — #14

70 Michael A. Wirth

the mechanisms that facilitate the recursive process, the resources it uses, and a

discussion of whether or not the result is better that an iterative solution. Re-

cursion is a challenging concept to teach, at any level. While Fibonacci, Factorial

and Towers of Hanoi provide an insight into problem solving recursively, they are

not the only algorithms available. It is time to move beyond these algorithms to

the far side of recursion.

References

[1] W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math Annalen 99

(1928), 118–133.

[2] J. R. Anderson, R. Farrell and R. Sauers, Learning to program in LISP, Cognitive
Science 8 (1984), 87–129.

[3] Y. Anzai and Y. Uesato, Learning recursive procedures by middle school children,
Proc. Conf. of the Cognitive Science Society (1982), 100–102.

[4] M. Augenstein and A. Tenenbaum, Program efficiency and data structures, ACM
SIGCSE Bulletin 9, no. 3 (1977), 21–27.

[5] L. Collatz, On the motivation and origin of the (3n+1) problem, J. Qufu Normal
University, Natural Science Edition 3 (1986), 9–11 (in Chinese).

[6] M. C. Er, On the complexity of recursion in problem-solving, Int. J. Man-Machine
Studies 20 (1984), 537–544.

[7] L. Euler, Observationes circa novum et singulare progressionum genus, Opera Om-
nia, Series Prima, Opera Mathematica 7 (1923), 246–261.

[8] E. V. Eusebi, Operators for recursion, ACM SIGAPL Quote Quad 15, no. 4 (1986),
190–194.

[9] R. Franklin, A simpler iterative solution to the Towers of hanoi problem, SIGPLAN
Notices 19, no. 8 (1984), 87–88.

[10] B. Haberman and H. Averbuch, The case of base cases: Why are they so difficult
to recognize? Student difficulties with recursion, ACM SIGCSE Bulletin 34, no. 3
(2002), 84–88.

[11] H. Kahney, What do novice programmers know about recursion, SIGCHI Conf. on
Human Factors in Computing Systems (1983), 235–239.

[12] D. Knuth, The Art of Computer Programming, v.1 Fundamental Algorithms, Ad-
dison Wesley, 1968, 158–159.

[13] R. L. Kruse, On teaching recursion, ACM SIGCSE Bulletin 14, no. 1 (1982), 92–96.

[14] J. Lagarias, The 3x + 1 problem and its generalizations, American Math Monthly
92 (1985), 3–23.

[15] R. Péter, Konstruktion nichtrekursiver Funktionen, Math. Ann. 111 (1935), 42–60.

[16] C. A. Pickover, Wonders of Numbers, Oxford University Press, Oxford, 2001,
116–118.

“04-wirth” — 2015/5/22 — 0:07 — page 71 — #15

The far side of recursion 71

[17] P. L. Pirollo and J. R. Anderson, The role of learning from examples in the acqui-
sition of recursive programming skills, Canadian Journal of Psychology 39, no. 2
(1985), 240–272.

[18] E. Roberts, Thinking Recursively, John Wiley & Sons, New York, 1986.

[19] R. M. Robinson, Recursion and double recursion, Bull. Amer. Math. Soc. 54 (1948),
987–993.

[20] J. S. Rohl, Recursion via Pascal, Cambridge University Press, 1984.

[21] E. Roosendaal, On the 3x + 1 problem, 2011,
http://www.ericr.nl/wondrous/index.html.

[22] W. W. Rouse Ball, Mathematical Recreations and Essays, Macmillan and Co., 1905.

[23] P. Sivilotti and S. Pike, The suitability of kinesthetic learning activities for teaching
distributed algorithms, ACM SIGCSE Bulletin 39, no. 1 (2007), 362–366.

[24] R. Sooriamurthi, Problems in comprehending recursion and suggested solutions,
ACM SIGCSE Bulletin 33, no. 3 (2001), 25–28.

[25] Y. Sundblad, The Ackermann function, A theoretical, computational and formula
manipulative study, BIT 11 (1971), 107–119.

[26] P. G. Tait, On the generalization of the Josephus problem, Proc. Royal Society of
Edinburgh 22 (1898), 432–435.

[27] B. A. Wichmann, Ackermann’s Function: A study in the efficiency of calling pro-
cedures, BIT 16 (1976), 103–110.

[28] B. A. Wichmann, How to call procedures, or Second thoughts on Ackermann’s
function, Software - Practice and Experience 7 (1977), 317–329.

[29] B. A. Wichmann, Latest results from the procedure calling test, Ackermann’s func-
tion, NPL Report DITC 3/82 (March 1982), http://history.dcs.ed.ac.uk/.

[30] S. Wiedenbeck, Learning recursion as a concept and as a programming technique,
ACM SIGCSE Bulletin 20, no. 1 (1988), 275–278.

[31] M. Wirth, Fibonacci beyond binary recursion, Teaching Mathematics and Computer
Science 6, no. 1 (2008), 173–185.

[32] M. Wirth, A multi-tiered pedagogical framework for teaching recursion, 2014, un-
published manuscript.

[33] N. Wirth, Algorithm + Data Structures = Programs, Prentice-Hall, 1976.

MICHAEL A. WIRTH

SCHOOL OF COMPUTER SCIENCE

UNIVERSITY OF GUELPH

GUELPH, ONTARIO N1G 2W1

CANADA

E-mail: mwirth@uoguelph.ca

(Received July, 2014)

