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Equivalences of Some Forms of the

Change of Variable Formula and the

Fundamental Theorem of Calculus

Haryono Tandra

Abstract. We discuss an interplay between some versions of the Change of Variable
Theorem and the Fundamental Theorem of Calculus for the Riemann integral. We
show that the two theorems are equivalent, and that for both theorems to be true it
suffices to assume two particular formulas derived from them. In the realm of teaching,
this material might be among our interests.
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1. Introduction

This note discusses an interconnection between two (weak) versions of the

Change of Variable Theorem for integrals (CVT) and the Fundamental Theorem

of Calculus (FTC) for the Riemann integral. Here we assert that the FTC ([2],

Theorem 2) and the two versions of CVT (the general version of the first is due to

Kestelman [4] and that of the second one is due to Preiss and Uher [5]), imply one

another. Also, we show that, for the FTC and all CVTs to be true it is enough

to assume two particular formulas derived from them which, in a loose fashion,

are:

(i) If F : [a, b]→ R is differentiable, nonzero, and F ′ is integrable with |F ′| ≥ δ

for some δ > 0 and F ′ has the same sign on [a, b], then F ′/F is integrable on
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[a, b], and
∫ b

a

F ′(x)

F (x)
dx =

∫ F (b)

F (a)

1

y
dy.

(ii) If 0 /∈ [a, b], then
∫ b

a

1

x
dx = ln |b| − ln |a|.

Our argument then provides an alternate approach of how a presentation of the

teaching material about the theorems can be carried out with the following in-

structional gains: (1) it can interestingly be developed only from those particular

formulas; (2) while only some elementary basic properties (we list them all) are

needed, the theorems we concern can be presented in general forms in which the

concepts of a set of measure zero and a Lipschitz condition for a function are

used; and last but not least, (3) the proofs we present are independent from the

Lebesgue criterion for the Riemann integrability.

Below we recall some basic concepts and related properties that we shall use.

(i) A real-valued function f on X ⊆ R is said to be Lipschitz if there exists a

positive number M such that for all s, t ∈ X,

|f(s)− f(t)| ≤M |s− t|.

The number M is called a Lipschitz constant for f .

(ii) A set A of real numbers is said to have a measure zero if for any ǫ > 0

there exists a countable collection {(un, vn)}
∞
n=1 of open intervals such that

A ⊆ ∪∞n=1(un, vn) and
∑∞

n=1(vn − un) < ǫ.

(iii) Two functions f and g on [a, b] are said to be equal almost everywhere, which

we write f = g a.e., if the set {x ∈ [a, b] : f(x) 6= g(x)} is of measure 0.

(iv) Let [a, b] be a given interval, where a < b. By a partition P of [a, b] we mean

a finite set of points x0, x1, . . . , xn, where x0 := a < x1 < . . . < xn := b.

Suppose now f is a bounded real function defined on [a, b], and P is a partition

x0 := a < x1 < . . . < xn := b of [a, b] for which

U(P, f) :=

n
∑

i=1

Mi (xi − xi−1) and L(P, f) :=

n
∑

i=1

mi (xi − xi−1)

where for each i ∈ {1, . . . , n},

Mi := sup{f(x) : xi−1 ≤ x ≤ xi} and mi := inf{f(x) : xi−1 ≤ x ≤ xi}.
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Now, let

U(f) := inf{U(P, f) : P is a partition of [a, b]},

L(f) := sup{U(P, f) : P is a partition of [a, b]}.

If U(f) = L(f), we say that f is Riemann integrable on [a, b]. In such a

case we write f ∈ R[a, b] (that is R[a, b] denotes the set of all Riemann

integrable functions on [a, b]) and we denote the common value by
∫ b

a
f(x) dx.

In addition, we define
∫ a

b
f(x) dx := −

∫ b

a
f(x) dx, and

∫ b

a
f(x) dx := 0 if

a = b.

Throughout our discussion, we assume that all integrability are in the Rie-

mann sense. The theorem below lists some basic properties we shall use.

Theorem 1.

(i) The following properties hold for continuous and Lipschitz functions.

(a) If f : [a, b] → R and g : [c, d] → R are composable functions, then (1) if

f and g are continuous, so is f ◦ g; and (2) if f and g are Lipschitz, so

is f ◦ g.

(b) An indefinite integral gc(x) :=
∫ x

c
f(t) dt, where c, x ∈ [a, b], is Lipschitz

on [a, b].

(c) If f is Lipschitz on [a, b], then f is continuous on [a, b].

(d) If f is Lipschitz on [a, b], then f is uniformly continuous on [a, b].

(e) If f is continuous on [a, b], then f ∈ R[a, b].

(f) [A weaker version of Theorem 14.13 in [1]] If f is Lipschitz on [a, b], and

A ⊆ [a, b] is of measure zero, then f(A) := {f(x) : x ∈ A} is of measure

zero.

(ii) f ∈ R[a, b] if and only if for every ǫ > 0 there exists δ > 0 such that if

x0 := a < x1 < . . . < xn := b is any partition of [a, b] with xi − xi−1 < δ, for

all i = 1, . . . n, then for any ci ∈ [xi−1, xi],
∣

∣

∣

∣

∣

n
∑

i=1

f(ci)(xi − xi−1)−

∫ b

a

f(x) dx

∣

∣

∣

∣

∣

< ǫ.

(iii) The following properties hold provided f, g ∈ R[a, b].

(a) For any [s, t] ⊆ [a, b], f ∈ R[s, t].

(b) [The additivity property over subintervals] If z ∈ [a, b], then
∫ b

a
f(x) dx =

∫ z

a
f(x) dx+

∫ b

z
f(x) dx.
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(c) [The linearity property] For any real number α, we have αf, f + g ∈

R[a, b], where
∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx,

and
∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

(d) f · g ∈ R[a, b].

(e) If f = g a.e., then
∫ b

a
f(x) dx =

∫ b

a
g(x) dx.

(f) [The monotonicity property] If f(x) ≥ g(x), for all x ∈ [a, b], then
∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx. In particular, if f is integrable on [a, b] and

f(x) ≥ 0, for all x ∈ [a, b], then
∫ b

a
f(x) dx ≥ 0.

(g) [Saks-Henstock Lemma for the Riemann integral] For every ǫ > 0 there

exists δ > 0 such that if x0 := a < x1 < . . . < xn := b is any partition of

[a, b] with xi − xi−1 < δ, for all i = 1, . . . n, then for any ci ∈ [xi−1, xi],
n
∑

i=1

∣

∣

∣

∣

f(ci)(xi − xi−1)−

∫ xi

xi−1

f(x) dx

∣

∣

∣

∣

< ǫ.

(For a general version see e. g. Corollary 5.4 in [1].)

We assume the following theorem to justify the fact that every Lipschitz

function f : [a, b]→ R is differentiable except on a set of measure zero.

Theorem 2 (Rademacher). If U is an open set of real numbers and f : U →

R is Lipschitz, then f is differentiable except on a set of measure zero.

It should be noted that we do not assume the following theorem.

Theorem 3 (Lebesgue criterion for the Riemann integrability). A function

f : [a, b]→ R is Riemann integrable if and only if f is bounded and f is continuous

except on a set of measure zero.

2. The main theorem and remarks

Let F be a real-valued function on [a, b], and g be a real-valued function

defined on J := F ([a, b]). Consider the following P1, P2, FTC, CVT 1, and CVT

2:
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P1.

(i) If F is Lipschitz, nonzero, and F ′ = f a.e., for some integrable function f on

[a, b] where |f | ≥ δ for some δ > 0 and f has the same sign on [a, b], then

f/F is integrable on [a, b], and

∫ b

a

f(x)

F (x)
dx =

∫ F (b)

F (a)

1

y
dy. (1)

(ii) If 0 /∈ [a, b], then
∫ b

a

1

x
dx = ln |b| − ln |a|.

P2. If F is Lipschitz, nonzero, and F ′ = f a.e., for some integrable function

f on [a, b], then f/F is integrable on [a, b], and

∫ b

a

f(x)

F (x)
dx = ln |F (b)| − ln |F (a)|. (2)

FTC (Botsko, [2]). If F is Lipschitz and F ′ = f a.e., for some integrable

function f on [a, b], then

∫ b

a

f(x) dx = F (b)− F (a). (3)

CVT 1 (A weaker version of Kestelman, [4]). If F is Lipschitz, F ′ = f a.e.,

for some integrable function f on [a, b] where f ≥ 0 (or f ≤ 0), and g is integrable

on J , then (g ◦ F )f is integrable, and

∫ b

a

g(F (x)) f(x) dx =

∫ F (b)

F (a)

g(y) dy. (4)

CVT 2 (A weaker version of Preiss and Uher, [5]). Let F be Lipschitz, and

F ′ = f a.e., for some integrable function f on [a, b] where |f | ≥ δ for some δ > 0

and f has the same sign on [a, b]. If g is bounded and (g ◦ F )f is integrable on

[a, b], then g is integrable on J , and

∫ b

a

g(F (x)) f(x) dx =

∫ F (b)

F (a)

g(y) dy. (5)

Main Theorem. The above statements are all equivalent.



“tmcs-tandra” — 2014/10/12 — 16:03 — page 274 — #6

274 Haryono Tandra

Proof. Our scheme of proof would be as follows:

P1⇒ P2⇒ FTC⇒ CVT 1⇒ CVT 2⇒ P1.

P1 ⇒ P2. Let G(x) := ln |F (x)|, x ∈ [a, b]. Note that G′ := F ′/F = f/F a.e.

Since f and 1/F are bounded, so is f/F . Let |f/F | ≤ B, that is

−B ≤
f(x)

F (x)
≤ B, x ∈ [a, b], (6)

for some B > 0. Let δ > 0 be arbitrarily fixed, and define the functions G1, G2, F1,

F2, f1 and f2 on [a, b] as follows:

G1(x) :=
1

2
(G(x) + (B + δ)x) , G2(x) :=

1

2
(G(x)− (B + δ)x) ,

F1(x) := eG1(x), F2(x) := eG2(x),

and

f1(x) :=
1

2
eG1(x)

(

f(x)

F (x)
+ (B + δ)

)

, f2(x) :=
1

2
eG2(x)

(

f(x)

F (x)
− (B + δ)

)

.

Note that F is cotinuous and so is G. Hence the function x 7→ eGi(x) (i = 1, 2) is

continuous, and thus integrable. Since G′ = f/F a.e., it follows that F ′1 = f1 a.e.

and F ′2 = f2 a.e., where f1 and f2 are both integrable on [a, b], as each of them is

an addition-multiplication combination of integrable functions. Equation (6) and

the fact that on [a, b] the exponential function is bounded from below by some

positive number, yield |f1| ≥ δ1 and |f2| ≥ δ2, for some δ1 > 0 and δ2 > 0. Having

|F | = F1 · F2, and thus differentiating both sides, gives F ′|F |/F = F ′1F2 + F1F
′
2,

or F ′/F = F ′1/F1 + F ′2/F2, and therefore f/F = f1/F1 + f2/F2 a.e. Since F ,

hence G, is Lipschitz, it follows that G1 and G2, hence F1 and F2, are Lipschitz.

Notice that each of the functions f1/F1, f2/F2, and f/F , is a product of two

integrable functions, so it is integrable. Hence by the linearity of the integral and

P1,

∫ b

a

f(x)

F (x)
dx =

∫ b

a

f1(x)

F1(x)
dx+

∫ b

a

f2(x)

F2(x)
dx

=

∫ F1(b)

F1(a)

1

y
dy +

∫ F2(b)

F2(a)

1

y
dy

= ln |F1(b)| − ln |F1(a)|+ ln |F2(b)| − ln |F2(a)|

= ln |F1(b) · F2(b)| − ln |F1(a) · F2(a)|
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= ln |F (b)| − ln |F (a)|.

.

P2 ⇒ FTC. Let H(x) := eF (x), x ∈ [a, b]. Let h := H · f , so that f = h/H.

Since F ′ = f a.e., f is integrable and H is continuous, it follows that H ′ = h a.e.

and h is integrable. Since F is Lipschitz, so is H. Applying P2 for the functions

h and H, we get

∫ b

a

f(x) dx =

∫ b

a

h(x)

H(x)
= ln |H(b)| − ln |H(a)| = F (b)− F (a).

FTC ⇒ CVT 1. It suffices to consider the case where f ≥ 0, as the other case

is similar. Since f ≥ 0, it follows from the FTC and the monotonicity of the

integral that F is non decreasing. Let ǫ > 0 be given. The integrability of g on

[F (a), F (b)] along with the integrability of f on [a, b], and the uniform continuity

of F on [a, b], while noting Theorem 1(iii)(g) and the FTC, allow us to set a

partition x0 := a < x1 < . . . < xn := b of [a, b] such that for any ci ∈ [xi−1, xi],

i = 1, . . . , n,
∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci))(F (xi)− F (xi−1))−

∫ F (b)

F (a)

g(y) dy

∣

∣

∣

∣

∣

< ǫ (7)

and

n
∑

i=1

∣

∣

∣

∣

∣

f(ci)(xi − xi−1)−

∫ xi

xi−1

f(x) dx

∣

∣

∣

∣

∣

=

n
∑

i=1

|f(ci)(xi − xi−1)− (F (xi)− F (xi−1))| < ǫ. (8)

Since the function g is bounded, there exists M > 0 such that |g(y)| ≤M , for all

y ∈ J . Then (7) and (8) give
∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci))f(ci)(xi − xi−1)−

∫ F (b)

F (a)

g(y) dy

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci)) (f(ci)(xi − xi−1)− (F (xi)− F (xi−1)))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci))(F (xi)− F (xi−1))−

∫ F (b)

F (a)

g(y) dy

∣

∣

∣

∣

∣

< Mǫ+ ǫ.

Therefore (g ◦ F )f is integrable on [a, b], and (4) holds.
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CVT 1⇒ CVT 2. Substituting g(y) := 1 into (4), gives
∫ b

a
f(x)dx = F (b)−F (a),

and so we have the formula
∫ t

s

f(x) dx = F (t)− F (s) (9)

for s, t ∈ [a, b]. Since |f | ≥ δ, where f has the same sign on [a, b], it follows that

|F (s)−F (t)| =
∣

∣

∣

∫ t

s
f(x) dx

∣

∣

∣
≥ δ |s− t| > 0 if s 6= t, showing that F is one-to-one.

Since F is continuous on [a, b], it follows that F−1 is continuous, hence uniformly

continuous, on the interval J = F ([a, b]). It is enough to consider the case where

f ≥ 0, so that F , hence F−1, is strictly increasing. Let ǫ > 0 be given. The

integrability of f and (g ◦ F )f on [a, b], together with Theorem 1(iii)(g) and (9),

allow us to choose η > 0 such that if x0 := a < x1 < . . . < xn := b is any partition

of [a, b] with xi − xi−1 < η, for all i = 1, . . . , n, then for any ci ∈ [xi−1, xi],

∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci))f(ci)(xi − xi−1)−

∫ b

a

g(F (x))f(x) dx

∣

∣

∣

∣

∣

< ǫ (10)

and

n
∑

i=1

∣

∣

∣

∣

∣

∫ xi

xi−1

f(x) dx− f(ci)(xi − xi−1)

∣

∣

∣

∣

∣

=

n
∑

i=1

|(F (xi)− F (xi−1))− f(ci)(xi − xi−1)| < ǫ. (11)

Since F−1 is uniformly continuous on J , there exists δ > 0 such that, for any

u, v ∈ J , if |u − v| < δ, then |F−1(u) − F−1(u)| < η. Let y0 := f(a) < y1 <

. . . < yn := f(b) be any partition of [F (a), F (b)] such that yi − yi−1 < δ, for all

i = 1, . . . , n. Let xi := F−1(yi), that is yi = F (xi). Then xi − xi−1 < η. Choose

any di := F (ci) ∈ [yi−1, yi]. Since the function g is bounded, there exists M > 0

such that for all y ∈ J , |g(y)| ≤M . Therefore, in view of (10) and (11),

∣

∣

∣

∣

∣

n
∑

i=1

g(di)(yi − yi−1)−

∫ b

a

g(F (x))f(x) dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci)) ((F (xi)− F (xi−1))− f(ci)(xi − xi−1))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=1

g(F (ci))f(ci)(xi − xi−1)−

∫ b

a

g(F (x))f(x) dx

∣

∣

∣

∣

∣

< Mǫ+ ǫ.
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Thus g is integrable on J and (5) is fulfilled.

CVT 2 ⇒ P1. First note that a similar argument as used in early part of the

proof of CVT 1 ⇒ CVT 2 implies that F is strictly monotone, so that it is one-

to-one. Let D := {x ∈ [a, b] : F ′(x) = f(x)}. Define a function h on J := F ([a, b])

as follows:

h(F (x)) :=

{

(F−1)′(F (x)) if x ∈ D
1

f(x) if x ∈ [a, b] \D.

Notice that (F−1)′(F (x)) exists whenever F ′(x) does, where each relates to the

other by the formula (F−1)′(F (x))F ′(x) = 1. Thus

h(F (x))f(x) = (F−1)′(F (x))f(x) = 1,

for all x ∈ D. It then follows from the definition of h that h(F (x))f(x) = 1, for all

x ∈ [a, b]. Since |f | ≥ δ > 0, it follows that h is bounded. As a constant function,

(h◦F )f is integrable, and so by CVT 2, h is integrable. Since f has the same sign

on [a, b], it follows that |F (s)−F (t)| =
∣

∣

∣

∫ t

s
f(x) dx

∣

∣

∣
≥ δ |s− t|, for all s, t ∈ [a, b],

showing that F−1 is Lipschitz. Since F ′ = f a.e on [a, b], it follows that [a, b] \D

is of measure 0. The fact that F is Lipschitz, by Theorem 1(i)(f), implies that

F ([a, b] \ D) = {F (x) : x ∈ [a, b] \ D} is of measure 0. It then follows from the

definition of h that (F−1)′ = h a.e. on J . Since f is integrable, it is bounded.

Consequently, since (h ◦ F )f = 1, we then have |h| ≥ δ0, for some δ0 > 0. Now

let g(x) := f(x)/F (x), x ∈ [a, b]. Then g is integrable, and g(F−1(y))h(y) = 1/y,

for all y ∈ J . As a continuous function, (g ◦ F−1) h is integrable on J , where

J = [F (a), F (b)] if F is increasing, and J = [F (b), F (a)] if F is decreasing, and

hence by CVT 2,

∫ F (b)

F (a)

g(F−1(y)) h(y) dy =

∫ F−1(F (b))

F−1(F (a))

g(x) dx

that is
∫ F (b)

F (a)
1/y dy =

∫ b

a
f(x)/F (x) dx. This proves part (i). Part (ii) is imme-

diate by substituting f(x) := ln |x| and g(y) := 1 into (5). �

Remark. We conclude our discussion with some interesting remarks from

Main Theorem:

• For CVT 1 (or equivalently CVT 2 or FTC) to be true it is enough to assume

two particular formulas obtained from CVT 1:

∫ b

a

f(x)

F (x)
dx =

∫ F (b)

F (a)

1

y
dy (12)
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where F is Lipschitz, non zero, F ′ = f a.e., with f is integrable on [a, b],

|f | ≥ δ for some δ > 0, and f has the same sign on [a, b] (which is obtained

from CVT 1 by setting g(y) := 1/y), and

∫ b

a

1

x
dx =

∫ ln |b|

ln |a|

dy (13)

(which is obtained from CVT 1 by setting f(x) := ln |x| and g(y) := 1).

• For FTC (or equivalently CVT 1 or CVT 2) to be true it is enough to assume

two particular formulas obtained from the FTC:
∫ b

a

1

x
dx = ln |b| − ln |a|, (14)

and
∫ b

a

h(x)

H(x)
dx =

∫ H(b)

H(a)

1

y
dy (15)

where H is Lipschitz, non zero, H ′ = h a.e., with h is integrable on [a, b],

|h| ≥ δ for some δ > 0, and h has the same sign on [a, b]. Notice that equation

(15) can be obtained from the FTC by setting f(x) :=
∫H(x)

H(a)
1/y dy, where

f ′(x) =
d

dx

(

∫ H(x)

H(a)

1

y
dy

)

=
H ′(x)

H(x)

by the chain rule for derivatives, while noting (14) and d(ln |t|)/dt = 1/t.

Here H ′/H = h/H a.e., where h/H is integrable on [a, b], as it is the product

of two integrable functions h and 1/H on [a, b].

• For CVT 1, CVT 2, and the FTC to be true it is enough to assume the

formula
∫ b

a

f ′(x)

f(x)
dx = ln |f(b)| − ln |f(a)| =

∫ ln |f(b)|

ln |f(a)|

dy.
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