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Heuristic arguments and rigorous

proofs in secondary school education

Zsolt Fülöp

Abstract. In this paper we are going to discuss some possible applications of the mechan-
ical method, especially the lever principle, in order to formulate heuristic conjectures
related to the volume of three-dimensional solids. In the secondary school educational
processes the heuristic arguments are no less important than the rigorous mathematical
proofs. Between the ancient Greek mathematicians Archimedes was the first who made
heuristic conjectures with the methods of Mechanics and proved them with the rigorous
rules of Mathematics, in a period, when the methods of integration were not known.
For a present day mathematician (or a secondary school mathematics teacher) the tools
of the definite integral calculus are available in order to calculate the volume of three
dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of
an ellipsoid. But in the secondary school educational process, it is also interesting to
make heuristic conjectures by the use of the Archimedean method. It can be understood
easily, but it is beyond the normal secondary school curriculum, so we recommend it only
to the most talented students or to the secondary schools with advanced mathematical
teaching programme.
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1. Introduction

The study of various curves and calculating the volume of solids obtained by

their revolution is one of the most important applications of the definite integral

calculus. Mechanics, as a science, was an inspiration to the development of inte-

gral calculus, as it raised very important issues, for example, in construction or
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shipbuilding, and problems which can be solved using definite integral. In order

to examine the stability of bodies, it is necessary to determine their mass, volume

or centre of gravity, and these problems can be handled easily by integral cal-

culus. Mechanics opened new perspectives towards the practical applicability of

these tools. In other words, the discovery of a special field of Mathematics, which

today is called integral calculus, was guided by physical intuition. Conversely, we

can say that before the appearance of integral calculus, the calculations related

to the volume of three-dimensional solids or the area of geometrical figures were

solved with the tools of Mechanics. So Mechanics, as science, helped the math-

ematical discoveries. We mainly want to refer to the works of Archimedes, who

has developed two procedures in order to determine the area of figures and the

volume of bodies: these are called geometrical and mechanical methods, respec-

tively. Archimedes determined the area of the orthotome (parabola), the volume

of the sphere, the volume of the spheroid, the centre of gravity of any segment

cut off from an orthoconoid (paraboloid), and obtained several further results by

the use of the so-called lever principle.

Archimedes in his workMethod presented his mechanical method based on the

application of the lever principle. This work was not known until the beginning

of the 20th century. This is the main reason why most historians of mathematics

devoted less attention to the heuristic methods of the Archimedean mathematics.

In 1906 J. L. Heiberg found a report on a palimpset with originally mathematical

content in the library of the monastery of the Holy Sepulchre in Jerusalem. He

examined this manuscript, and it proved to contain an Archimedes text written

on parchment, which had been erased in the 12-14th centuries, in order to right

a Euchologium in its stead. It contains fragments of some works of Archimedes

known from other sources, such as On the Sphere and the Cylinder, Measurement

of the Circle, On the Equilibrium of Planes, and an almost complete text of an

as yet unknown, very important work of Archimedes, what is referred as Method.

If we want to put the Archimedean work in perspective we have to know the

circumstances in which he lived and created, and also we have to know some-

thing about the work of his ancestors. It is well-known that the mathematics of

the ancient river valley cultures was purely empirical. The mathematics of the

Greek classical period is totally different. If we study the works of mathemati-

cians of that period, we can find sequences of postulates, axioms, definitions and

theoretical propositions followed by rigorous proofs based on the postulates and

previous propositions (A brief, but eloquent summary can be found in [5] and

[6]). In fact, Greek classical mathematics is characterized by a care of the form of
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the mathematical argument, which, superficially viewed, seems almost exagger-

ated. However, we have to mention that we do not find any calculations or any

heuristic argument. The mathematics of this time is purely deductive without

any empiricism. We know nothing about the way of discovering the propositions

or the background of the definitions and postulates. Archimedes was the most

influential mathematician of the forthcoming Hellenistic time. In this era, we can

find calculations besides the deductively proved theorems and the mathematicians

not only established propositions with rigorous proofs but sometimes explained

the way of finding their results. The mathematicians have not only dealt with ab-

stract problems and questions, but the need of the heuristic argument appeared.

Archimedes was the pioneer of this approach. In his work we can find an excellent

alloying of heuristic conjectures and rigorous mathematical proofs.

In the time of Archimedes the mathematics of the Greeks achieved the highest

results. From his ancestors Democritus was the first to state that the cone is one-

third of the cylinder having the same base and equal height (even though without

proof), and Eudoxus was the first to discover the proofs to this theorem. In

a sense, the Greeks knew the coordinate geometry. For example, Archimedes

used the equation of conic sections in the so called “two-abscissas” form [9]. This

cannot be regarded as analytic geometry in a modern sense, but we will see further

that the main results might also be achieved by using these calculations.

The Greeks had a low level Mechanics knowledge, compared with their Math-

ematics. In fact, we can say that Archimedes was the founder of the Greek Me-

chanics. He discovered, for example, the laws of the floating bodies, the laws of

the lever and the main properties of the centre of gravity.

2. The heuristic argument and the rigorous mathematical proof

The Method starts with a number of lemmas on centre of gravity, some of

which can be found as postulates or propositions in On the Equilibrium of Planes.

This part is followed by the propositions. These propositions contain all the

heuristic conjectures formulated using mechanical principles, with regard, for ex-

ample, to the area of an orthotome (parabola) or to the volume and the centre

of gravity of three-dimensional bodies. Proposition 1 refers to the area of the

orthotome, as follows [2]:

Proposition 1. Let the segment αβγ be given, comprehended by the

straight line αγ and the orthotome αβγ; let αγ be bisected in δ , let δβǫ be
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drawn parallel to the diameter, and let βα and βγ be joined. I say that the

segment αβγ is larger by one-third than the triangle αβγ. (See Figure 1)

Figure 1

In order to formulate his heuristic conjecture Archimedes makes use of con-

siderations taken from mechanics. The method consists in geometrical figures to

be attached to a lever in such a way that the lever remains in equilibrium, and

then draws up conditions for such equilibrium. This method is also based on the

view that the area of a plane figure is to be looked upon as the sum of the lengths

of all the line segments drawn therein in a given direction and of which the figure

is imagined to be made up; similarly, a three-dimensional solid is conceived to be

made up of all the intersections determined therein by a plane of fixed inclina-

tion that is displaced, and the volume of the solid is looked upon as the sum of

the areas of those intersections. The importance of this method becomes clear

from a letter to Erathostenes, where Archimedes states “it is easier to supply the

proof when we have previously acquired, by the method, some knowledge of the

questions than it is to find it without any previous knowledge”.

We have to mention that Archimedes does not recognize the results obtained

with the above method as actually proved conclusions. This point of view is

evident from the fact that in his treatise Quadrature of the Parabola he proves

the results gained in Proposition 1 by a deductive way of thinking, satisfying all

requirements of exactness. Both of the methods, namely the heuristic conjecture

and the deductive proof, with regard to the area of the segment of the orthotome

(parabola) are contained in several works, such as [2], [5], [6] and [9].

3. The Volume of an paraboloid (orthoconoid) segment

In the Method the Proposition 4 is related to the volume of an orthoconoid

(paraboloid) segment in the following way [3]:
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Proposition 4. Any segment of a right-angled conoid (i.e. a paraboloid of

revolution) cut off by a plane at right angles to the axis is one and a half times

the cone which has the same base and the same axis as the segment.

Figure 2

3.1. The heuristic conjecture

In Figure 2 let the orthotome DOG generate, by revolution about the diam-

eter OT, a paraboloid, from which a segment is cut off by a plane through T at

right angles to OT. A variable plane MN at right angles to OT intersects the

paraboloid in a circle on CF as diameter, and the cylinder which has its base and

height in common with the segment of paraboloid in a circle on MN as diameter.

We denote the common height of the paraboloid segment and the cylinder by

OT = h and the common radius of their bases by DT = R . Summarising, in

Figure 2:
DOG - the section of the paraboloid segment,

BEGD - the section of the cylinder,

A - a variable point on the line OT.
We compare the volume of the paraboloid segment and the volume of the

cylinder using the following terms:

The weight of a line segment: the length of it.

The area of a figure: the sum of weighted (parallel) line segments covering

the figure.

The volume of a body: the sum of weighted circles filling up the body.

The volume of a paraboloid segment: the sum of weighted circles on CF

as diameter.

The volume of a cylinder: the sum of weighted circles on MN as diameter.
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By the property AC2

DT 2 = OA
OT

of the orthotome (parabola) and the equality

DT = AM we obtain:

AC2 ·OT = AM2 ·OA . (3.1)

We consider the point S in Figure 2, specified by OS = OT . Then identity (3.1)

yields

AC2 ·OS = AM2 ·OA . (3.2)

Now we give a mechanical analysis of identity (3.2):

(a) Consider OS and OA as arms of a lever with fulcrum at O.

(b) Place the weight of the circle on CF as diameter at S. Then A is the point

where placing the weight of the circle on MN as diameter we reach the equi-

librium of the lever (because of the fact that the area of a circle is proportional

with the square of its radius).

(c) Consequently the sum of the weights of all circles on segments like CF as

diameters placed at S will balance the sum of all circles on segments like MN

as diameters whenever their weight is placed at their midpoint.

(d) The collection of all circles on segments like MN as diameter the weight of

each placed at its midpoint is equivalent to the cylinder placed at its centre

of gravity.

(e) The collection of all circles on segments like CF as diameter placed at S is

equivalent to the paraboloid segment placed at S.

(f) The cylinder has its centre of gravity situated in the middle of the segment

OT, so we have the equality

Vorthoconoid ·OS = Vcylinder ·
OT

2
, (3.3)

and OS = OT yields the result:

Vorthoconoid = Vcylinder ·
1

2
. (3.4)

So the Archimedean results with regard to the volume of a paraboloid segment

might be formulated as follows:

(a) the volume of a paraboloid segment is equal to the half of the volume of

the cylinder which has its base and height in common with the orthoconoid-

segment;

(b) the volume of a paraboloid segment is one and a half times the volume of the

cone which has the same base and the same height as the paraboloid segment.

(In this argumentation we used the fact proved by Eudoxos, that the volume
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of a cone is a third of the volume of a cylinder which has its base and height

in common with the cone).

We have to mention that in our argumentation we used the Archimedean way of

thinking, based on the comparison of different three-dimensional bodies (in the

Hellenistic period the notion of π was not yet known). Since for a present day

mathematician the volume formulas are available, we can formulate our results in

a modern-way of thinking (and using our notations, h denotes the height of the

paraboloid segment):

Vorthoconoid = Vcylinder ·
1

2
=

π ·DT 2 ·OT

2
=

π · (
√
h)2 · h
2

=
π · h2

2
. (3.5)

This formula can also be obtained by using definite integral. Namely, the graph

of the function f(x) =
√
x by revolution about the x axis generates a paraboloid

segment whose volume is

V = π ·
∫ h

0

x dx = π ·
[

x2

2

]h

0

=
π · h2

2
. (3.6)

3.2. The deductive proof

Archimedes was perfectly aware of the fact that his argument is only a heuris-

tic conjecture that should be proved geometrically. The geometrical method used

by Archimedes to prove his results regarding the area of a parabola segment is

contained in the treatise Quadrature of the Parabola (see [2], [5], [6] and [9]). The

Archimedean proof is based on the method of double reductio ad absurdum.

In his work On Conoids and Spheroids, Archimedes determined the volumes

of segments of solids formed by the revolution of a conic section (circle, ellipse,

parabola, or hyperbola) about its axis (see [2] and [9]). In modern terms, these

are problems of integration. In this work Archimedes gives rigorous mathematical

proofs concerning the volume of the above mentioned three-dimensional bodies.

In order to prove the formula regarding the volume of a paraboloid segment in a

rigorous geometrical way, we have to split the paraboloid segment in pieces which

have the same height (see Figure 3). Each of the pieces has its own inscribed

and circumscribed cylinder. We denote by V1, V2, · · · , Vn the volumes of the

circumscribed cylinders. Each of the cylinders has the same height, therefore,

using the properties of the parabola, we obtain

Vk

V1
=

R2
k

R2
1

= k ; 1 < k ≤ n ; k ∈ N . (3.7)
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Figure 3

Thus the sum of the volumes of the circumscribed cylinders is

S1 = V1 + V2 + · · ·+ Vn = V1 + 2 · V1 + · · ·+ n · V1 =
n · (n+ 1) · V1

2
. (3.8)

The inscribed cylinders have the volumes V1, V2, · · · , Vn−1, respectively. Their

sum is

S2 = V1+V2+ · · ·+Vn−1 = V1+2 ·V1+ · · ·+(n−1) ·V1 =
(n− 1) · n · V1

2
. (3.9)

and the following inequalities hold:

S2 <
n2 · V1

2
< S1 . (3.10)

The product n2 · V1 is equal to the volume of congruent cylinders, each of them

having the volume Vn = n · V1. These cylinders are the constituent parts of the

circumscribed cylinder of the paraboloid segment, therefore the circumscribed

cylinder has the volume V ′ = n2 · V1. Thus formula (3.10) implies that

S2 <
V ′

2
< S1 . (3.11)

Our task is to show that V = V ′

2 , where V is the volume of the paraboloid

segment. It is further assumed that the following inequality holds:

S2 < V < S1 . (3.12)

The difference S2 − S1 = n · V1 is equal to the volume of the bottommost cir-

cumscribed cylinder and, by a suitable choice of n , it can be made less than any

assigned positive number ε . Hence we have the inequality

S1 − S2 < ε . (3.13)
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To conclude the proof, Archimedes uses a double reductio ad absurdum argument.

The idea is the following: if we show that both V ′

2 < V and V < V ′

2 are impossible,

the equality V = V ′

2 follows.To do this, first suppose that V ′

2 < V , and we find a

positive integer n such that S1−S2 < V − V ′

2 . This implies S1 = S2+(S1−S2) <
V ′

2 + (S1 − S2) < V , contradicting relation (3.12). On the other hand, suppose

that V < V ′

2 . Then there is a positive integer n such that S1 − S2 < V ′

2 − V

. We have S1 = S2 + (S1 − S2) < V + (S1 − S2) < V ′

2 , and this contradicts

inequality (3.11). Therefore the equality V = V ′

2 holds. So we rigorously proved

the heuristic conjecture obtained by the mechanical method.

4. Heuristic conjectures with regard to the volume of various
three-dimensional bodies by the use of the lever principle

The mechanical method based on heuristic conjectures related to the volume

of a sphere can be found in [1], [2], [3], [7] and [9]. The entire derivation is based

on the lever principle, and the results are contained in Proposition 2 of the Method

[3]:

Proposition 2. Any sphere is four times the cone with base equal to a great

circle of the sphere and height equal to its radius; and the cylinder with base equal

to a great circle of the sphere and a height equal to the diameter is one and a half

times the sphere.

We omit the lever-principle based derivation, because its detailed presentation

is contained in the above mentioned works, but in Section 5 we will give a detailed

presentation of the deductive proof concerning the volume of a sphere.

4.1. The volume of a spheroid (ellipsoid)

Proposition 3 of the Method contains a heuristic conjecture with regard to

the volume of a spheroid, as follows [3]:

Proposition 3. A cylinder with base equal to the greatest circle in a spher-

oid and height equal to the axis of the spheroid is one and a half times the

spheroid; when this is established it is plain that if any spheroid be cut by a

plane through the centre and at right angles to the axis, the half of the spheroid
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is double of the cone which has the same base and the same axis as the segment

(i.e. the half of the spheroid).

Figure 4

We try to describe in detail the heuristic arguments, namely we try to make

conjectures to the volume of a spheroid with axes OE = 2 · a and FD = 2 · b ,

respectively. In Figure 4, let ODEF be the greatest section of the spheroid, OE

and DF its axes. Consider the cone with vertex O, whose base is the circle on

DF as diameter, in the plane of DF, at right angles to OE. The extended surface

of this cone intersects the plane through E at right angles to OE in a circle on

IJ as diameter. This circle is the base of a cylinder GHIJ with height OE. We

consider OS = OE and SE as a lever with fulcrum O. A variable plane MN at

right angles to OE intersects the spheroid in a circle on PQ as diameter, the cone

in a circle on BR as diameter and the cylinder in a circle on MN as diameter.

From the similarity of triangles OAB∆ and OCD∆, it follows that AB
OA

= CD
OC

,

and the following equality holds:

AB = OA ·
CD

OC
= OA ·

b

a
. (4.1)

In the Archimedes’ works the implicit equations of the cone sections have the

“two-abscissas” form, which can be imagined as follows. We consider the axis

OE and a point P of the spheroid. We call y = AP the ordinate of the point

(AP is at right angles to OE ), and the point P has two abscissas, OA = x1 and

AE = x2. The symptom of the oxytome (ellipse) has the form y2

x1·x2

, where α is

a parameter, which characterizes the oxytome. For example, in the case of the

sphere α = 1. Both of the points P and D are situated on the ellipse, therefore
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they should satisfy the symptom of the oxytome:

AP 2

OA ·AE
=

CD2

OC · CE
= α . (4.2)

From this it follows that

AP 2 = OA · (2 · a−OA) ·
b2

a2
. (4.3)

Moreover, using (4.1) we find that

AB2 +AP 2 = 2 ·
b2

a
·OA . (4.4)

We have to mention that (4.4) can also be obtained by the tools of modern analytic

geometry, namely, if instead of (4.2) we use the equation of the ellipse in the form
AC2

a2 + AP 2

b2
= 1 , but we opted to follow the Archimedes’ mathematical tools and

his logical way of thinking.

Now it is easy to see that

AB2 +AP 2

AM2
=

OA

2 · a
=

OA

OE
. (4.5)

The circle onMN as diameter suo loco can therefore balance two circles on PQ

and BR as diameters, respectively, both of them placed in S. Consequently there

is also an equilibrium between the cylinder GHIJ suo loco and the combination

of the spheroid ODEF and the cone OIJ, both of them placed in S (because of

the fact that the three solids are filled up by the above mentioned circles if the

plane MN moves from GH to IJ ).

Since C is the centre of gravity of the cylinder, the following equality holds:

Vspheroid + Vcone(OIJ)

Vcylinder(GHIJ)
=

OA

OE
. (4.6)

Hence

Vcylinder(GHIJ) = 2 ·
(

Vcone(OIJ) + Vspheroid

)

. (4.7)

The cylinder is three times the cone (this fact was firstly discovered by Democritus

and proved by Eudoxus), so it follows from (4.7) that

Vspheroid =
Vcylinder(GHIJ)

2
− Vcone(OIJ) =

Vcylinder(GHIJ)

6
. (4.8)

If we denote by Vcylinder the volume of the circumscribed cylinder (the cylinder

which has a base equal to the greatest circle and a height equal to the axis of the

spheroid), we obtain

Vcylinder(GHIJ)

V cylinder
=

IJ2

b2
= 4 . (4.9)
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From (4.8) and (4.9) we conclude the statement of the Proposition 3:

Vcylinder =
3

2
· Vspheroid . (4.10)

A present day mathematician can operate with the volume of the cylinder to

obtain:

Vspheroid =
2

3
· Vcylinder =

2

3
· π · (2 · a) · b2 =

4 · π · a · b2

3
. (4.11)

The method of definite integral calculus delivers us the same result. We consider

the graph of the function f(x) = b ·
√

1− x2

a2 on the interval (−a, a) .This graph,
by revolution about the x axis, generates the ellipsoid. Thus the volume of the

ellipsoid can be obtained as follows:

V = π · b2 ·
∫ a

−a

(

1−
x2

a2

)

dx = π · b2 ·
[

x−
x3

3 · a2

]a

−a

=
4 · π · b2 · a

3
. (4.12)

4.2. The volume of a segment of a sphere

Proposition 7 of theMethod contains the statement with regard to the volume

of the segment of a sphere, as follows [3]:

Proposition 7. Any segment of a sphere has to the cone with the same base

and height the ratio which the sum of the radius of the sphere and the height of

the complementary segment has to the height of the complementary segment.

Figure 5
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Primarily, our intention is to determine the volume of the segment of a sphere,

its height is OT = h , its base is a circle on QV = 2 · ̺ as diameter (see Figure

5 ). We denote the radius of the sphere by R. The segment of the sphere is

generated by revolution of the segment of the circle QOV about OH. We consider

the cylinder XYZW with height OT whose base is a circle on WZ = 4 · R as

diameter. We consider the cone OPR with height OT whose base is a circle on

PR as diameter, where PR = 2 ·OT . A variable plane MN at right angles to OH

intersects the cone OPR in a circle on GF as diameter, the cylinder XYZW in

a circle on MN as diameter and the segment of the sphere in a circle on CE as

diameter. Then AC2 = AO · (2 ·R−AO) , and we obtain:

AC2 +AG2

AM2
=

AO · (2 ·R−AO) +AO2

(2 ·R)2
=

AO

2 ·R
. (4.13)

Just as above, we apply the lever principle with SO = OH, and SH is considered

as a balance with fulcrum O. From (4.13) we can see that the cylinder suo loco

balances the combination of the cone OPR and the segment of the sphere, both

of them placed in S. As the centre of gravity of the cylinder is located at h
2 away

from the fulcrum, the equilibrum of the moments of forces yields the equality

h

2
· Vcylinder(XY ZW ) = 2 ·R ·

(

Vsegment + Vcone(OPR)

)

. (4.14)

Thus

Vsegment =
h

4 ·R
· Vcylinder(XY ZW ) − Vcone(OPR) . (4.15)

Now we consider the cone OVQ which has its base the circle on QV = 2 · ̺ as

diameter, and its height is OT = h . The following equalities hold:

Vcone(OVQ)

Vcone(OPR)
=

QT 2

PT 2
=

̺2

h2

Vcone(OVQ)

Vcylinder(XY ZW )
=

1

3
·
QT 2

WT 2
=

̺2

12 ·R2
. (4.16)

From (4.15), (4.16) and the equality ̺2 = h · (2 ·R− h) we obtain

Vsegment =
h · (3 ·R− h)

̺2
· Vcone(OVQ) =

3 ·R− h

2 ·R− h
· Vcone(OVQ) , (4.17)

whence the statement

Vsegment

Vcone(OVQ)
=

(2 ·R− h) +R

(2 ·R− h)
. (4.18)

of Proposition 7 follows.
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Remark. For a present day mathematician it is more straightforward to

substitute in (4.15) the formulas for the volume of the cylinder XYZW and the

cone OPR to obtain

Vsegment = π · h2 ·R−
π · h3

3
. (4.19)

Taking into account that ̺2 = h · (2 ·R−h), we have R = ̺2+h2

2·h , and (4.19) takes

the form

Vsegment =
π · h · ̺2

2
+

π · h3

6
. (4.20)

We have to mention that (4.20) is the well known formula for the volume of the

segment of a sphere, which can be found in any students’ textbooks.

We can also deduce (4.19) with the tools of definite integral calculus. We

consider the graph of the function f(x) =
√
2 · x ·R− x2 on the interval (0, h).

This graph by revolution about the x axis generates a segment of a sphere. The

volume of the segment can be determined as follows:

V = π ·
∫ h

0

(2 · x ·R− x2) dx = π ·
[

x2 ·R−
x3

3

]h

0

= π · h2 ·R−
π · h3

3
. (4.21)

4.3. The volume of a segment of a spheroid

In Proposition 8 is merely stated that by this method it is also possible to find

the volume of any segment of a spheroid [2]. We try to reproduce the heuristic

conjecture concerning to the volume formula using the Archimedean methods.

Figure 6
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The segment of the spheroid is generated by revolution of the segment XOW

of the ellipse about OE (the ellipse has its own axes denoted by OE = 2 · a and

FD = 2 · b , see Figure 6 ). This segment of spheroid has height OZ = h, and its

base is the circle on XW as diameter. We consider a cylinder with height OZ = h

whose base is a circle on GH = 4 · b as diameter. The cone OYV has its height

OZ = h , and its base is a circle on YV as diameter, where Y V = 2 · h · b
a
. A

variable plane MN at right angles to OE intersects the segment of the spheroid,

the cone and the cylinder in circles on PQ, BR and MN as diameters, respectively.

The calculations are carried out in the same way as in the case of the spheroid

and we get the following equalities:

AB2 +AP 2

AM2
=

OA

OE
=

OA

OS
. (4.22)

OS and OE are considered as the two arms of a lever with fulcrum O, such that

OS = OE, and it is recognized that the cylinder suo loco balances the combination

of the cone and of the segment of spheroid, both of them placed in the point S.

Therefore we have

(

Vsegment + Vcone

)

·OS = Vcylinder ·
h

2
, (4.23)

whence

Vsegment =
h

4 · a
· Vcylinder − Vcone . (4.24)

A simple geometrical calculation leads to

Vcone = Vcylinder ·
h2

12 · a2
. (4.25)

From (4.24) and (4.25) we get

Vsegment =
h

12 · a2
· Vcylinder · (3 · a− h) . (4.26)

The points X and D are situated on the oxytome, and by the symptom of the

oxytome we have

XZ2

OZ · ZE
=

CD2

OC · CE
= α , (4.27)

whence

XZ2 =
b2

a2
· h · (2 · a− h) . (4.28)

We consider the cone which has its base and height in common with the

segment of the spheroid and we denote its volume by Vcone(OXW ) . Using (4.28)
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we obtain

Vcone(OXW ) = Vcylinder ·
h · (2 · a− h)

12 · a2
. (4.29)

From (4.26) and (4.29) it follows that

Vsegment

Vcone(OXW )
=

3 · a− h

2 · a− h
=

(2 · a− h) + a

2 · a− h
. (4.30)

Remark. A present day mathematician can get the following result by a

substitution of the volume of the cylinder in (4.26):

Vsegment =
π · b2 · h2

3 · a2
· (3 · a− h) . (4.31)

Formula (4.31) can also be obtained by integral calculus. We consider the graph

of the function f(x) = b ·
√

1− x2

a2 on the interval (−a,−a + h). This graph, by

revolution about the x axis, generates a segment of an ellipsoid. The volume of

the segment, namely formula (4.31), can be calculated as follows:

V = π · b2 ·
∫

−a+h

−a

(

1−
x2

a2

)

dx = π · b2 ·
[

x−
x3

3 · a2

]

−a+h

−a

=
π · b2 · h2

3 · a2
· (3 ·a−h) .

5. Concluding methodological remark

a) Archimedes was perfectly aware of the fact that mechanically formulated

conjectures are only heuristically accepted. As much as credible, without

precise mathematical proofs they remain conjectures only. However, we can

say these are forward-looking conjectures and the idea is worth more than

the requirements of this problem. According to our present knowledge, the

transition from the section to the entire body means the transition from

differential calculus to the integral calculation. Archimedes’ works also reveals

that he knew the enclosure principle from the Riemann integral definition and

he used this to determine the volume of the bodies. However, we can not say

that he knew the concept of integral calculus, because his calculations are

always bound to definite geometrical meaning, such as volumes and surfaces.

We can not observe he recognized that a single concept forms the basis of all

these geometrical interpretations.

b) The knowledge of the above-mentioned heuristic conjectures is very important

for mathematics teachers. During the educational process, in many cases the
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presentation of heuristic conjectures is at least as important as the description

of rigorous mathematical proofs. For secondary school students often there

is no clear distinction between the heuristic argumentations and the rigorous

proofs. We hope that these classical examples help the students clearly un-

derstand this distinction. In the educational processes, the Mathematics or

Physics teachers with the method of the lever principle can stimulate their

students to make their own heuristic conjectures and determine the volume

of the above mentioned three-dimensional bodies, even though the students

know nothing about the integral calculus. However, the examples described

above are eloquent proof of the relationship between Mathematics and Phys-

ical science. It is also worth mentioning, as Archimedes draws a distinction

between mechanical and mathematical ideas. Knowing his train of thought

is helpful in Mathematics and Physics educational processes.
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