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The study of sequences defined by a

first order recursion by means of a

pocket calculator

Zoltán Tuzson

Abstract. This paper will present the way we can use a simple pocket calculator to
teach mathematics. Namely, a pocket calculator can be very useful to study the prop-
erties of sequences defined by first order recursion (e.g. monotonicity, boundedness and
convergence) and to gain a deeper understanding.
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Nowadays, one can propose whether calculators (i.e., that of mobile phones or

computers) can be used for any other purposes than ordinary arithmetic? This

paper will prove that it can be very beneficial for studying the convergence of

sequences as well as for guessing the limit of a sequence. Moreover in the second

part it plays an important role, since it can create predictions regarding the limit

of a sequence.

Therefore, my main aim is to advertise and to recommend trying it out.

The purpose of my experiments was to study the convergence of certain se-

quences defined by a recursive relation with the students. They have previously

gained the more important, necessary concepts and knowledge, the information

related to monotonicity and boundedness, and we had started to calculate the

limits of sequences. But we can say that we are only beginners in this domain.
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In my opinion the whole mathematical analysis of High School, especially

the convergence of sequences and the calculation of their limits is hard to under-

stand because a proper concrete illustrative model is missing. More exactly, the

phenomena related to infinite cannot really be modelled. We do not have any

intuitive basis or support for this, only definitions, concepts, predefined rules and

theorems. That’s why I wondered how we can present this topic in such a way

that the students can experience it actively. Then it came to my mind that with a

manual calculator we can experience such concepts as monotonicity, boundedness

and, finally, the concept of convergence quickly and easily. For this, I decided

that I will try all this, which I am going to share below. I must admit that I

did not regret it because according to the feedback, the students understood this

topic better than if I had just written the lesson on the blackboard with a chalk.

At the same time, we also presented and analyzed in detail the following proof

on the blackboard. At first, however, we tried the experiment and after that we

discussed and proved our results.

In what follows, we will use the so called Weierstrass theorem which states

that each monotone and bounded sequence of a real number (xn)n≥1 is convergent.

The key to the proof of the theorem is that in the case of each bounded and

decreasing (xn)n≥1 sequence of a real number limn→∞ xn = inf{xn : n ≥ 1},
or in the case of each bounded and increasing (xn)n≥1 sequence of real numbers

limn→∞ xn = sup{xn : n ≥ 1} (see e.g. [1]).

Experiment 1. Let’s type 2 into a pocket calculator and calculate its square

root. Then calculate the square root of the result. We do this until we see the same

number displayed over and over again. What can we say about the monotonicity,

boundedness and limit of the sequence? How can we explain what we can see?

Solution. On the display of a pocket calculator which can display only 8

characters we can see the following, respectively: 1.4141356; 1.1892071; 1.0905076;

1.0442737; 1.0218971; 1.0108892; 1.0054298; 1.0027112; 1.0013546; 1.0006770;

1.0003384; 1.0001691; 1.0000845; 1.0000422; 1.0000210; 1.0000104; 1.0000051;

1.0000025; 1.0000012; 1.0000005; 1.0000002; 1.0000001; 1.; 1.; 1.; . . . .

The following properties can be read:

(1) The resulting sequence is strictly decreasing. We are going to prove this. The

members of the sequence in question are: a1 =
√

2 = 2
1
2 , a2=

√
a1=

√√
2 =
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= 2
1

22 , a3=
√

a2=

√

√√
2 = 2

1

23 , and usually

an+1=
√

an=

√

√

√

. . .
√

2

(n+1)−root sign

= 2
1

2n+1

for ∀n ≥ 0. It is easy to see that a1 >
√

a1 = a2, hence if we use the method

of mathematical induction and we assume that an+1 > an, then the

an+1 − an =
√

an −√
an−1 =

an − an−1√
an +

√
an−1

formula immediately implies that an > an+1, namely, the sequence is indeed

strictly decreasing. Another way to prove the monotonicity of the sequence

is if we write

an+1

an

=
2

1

2n+1

2
1

2n

= 2−
1

2n+1 < 20 = 1.

This is shorter than the previous proof, which we present in order to help to

acquire the technique of proving.

(2) Because the sequence is strictly decreasing it has a least upper bound. In this

way an ≤ a1 =
√

2, ∀n ≥ 1. And as each member of the sequence is positive

we can surely conclude that an ∈ (0,
√

2 ] for ∀n ≥ 1. So the sequence is

bounded.

(3) Since the sequence (an)n≥1 is strictly decreasing and bounded, hence due to

the theorem of Weierstrass, the sequence is convergent, so it has a limit. On

the display of the pocket calculator we sense this, as after executing a certain

number of operations the display shows 1. From this, one might conjecture

that limn→∞ an = 1. Indeed, since for all n ≥ 1 equation a2
n+1 = an is

fulfilled, so if limn→∞ an = a, then necessarily a2 = a has to be satisfied.

Since, however, an ≥ 1 for all n ≥ 1, we get that a ≥ 1, so a = 1. At the

same time we have illustrated the theorem which says that the greatest lower

bound of a monotonic decreasing sequence is its limit, in our case 1.

(4) Furthermore it has to be explained why, after executing a certain number of

operations, there always appears 1 on the display of the calculator. We can

find out the reason of this when we do these calculations on a calculator that

has more than 8 digits on its display. Here, after 1, 0000000 there can appear

digits which are not a 0. Therefore, with an 8 digit calculator we could only

approximate the limit of the sequence which was 1 with seven decimals.

It is interesting to observe the members of the sequences a1 = 1 + 10−6,

an+1 = a2
n (n ≥ 1) or a1 = 1 − 10−7, an+1 = a2

n on the display of the calculator.
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Experiment 2. The task is the same as in Experiment 1, but with the

difference that in the place of 2 we can pick an arbitrary number a > 0.

Solution. Executing the calculations in specific cases and observing the

shown values, we can see that after a number of steps the number 1 is shown

again. The value 1 can be reached faster or slower, that is to say, even the “speed

of convergence” changes. Every other result and the proof are the same as shown

before. All in all, we showed that for arbitrary a > 0

lim
n→∞

√

√

√

. . .
√

a

n−root sign

= 1 i.e.

√

√

√

. . .
√

a = 1

holds, where the number of the root signs is infinitely big.

Experiment 3. Let’s type 2 into a pocket calculator and calculate its square

root. Multiply the result by two and calculate its square root again. We shall

repeat this operation until we get the same number displayed over and over again.

What can we say about the monotonicity, boundedness and limit of the sequence?

How can we explain what we can see?

Solution. On the display of a pocket calculator which can only display 8

characters we can see the following, respectively: 1.4141356; 1.6817928; 1.8340080;

1, 9152065; 1.9571441; 1.9784560; 1.9891988; 1.9945921; 1.9972942; 1.9986466;

1.9993232; 1.9996615; 1.9998307; 1.9999153; 1.9999576; 1.9999758; 1.9999884;

1.9999947; 1.9999973; 1.9999986; 1.9999993; 1.9999996; 1.9999998; 1.9999999; 2;

2; 2; . . . .

The following properties can be read:

(1) The resulting sequence is strictly increasing. We are going to prove this. The

members of the sequence in question are: a1 =
√

2 = 2
1
2 , a2 =

√
2a1 =

=
√

2
√

2 = 2
1
2
+ 1

4 , a3 =
√

2a2 =

√

2
√

2
√

2 = 2
1
2
+ 1

4
+ 1

8 , and usually

an+1 =
√

2an =

√

2

√

2

√

2 . . .
√

2

(n+1)−root sign

= 2
1
2
+ 1

4
+ 1

8
+···+ 1

2n+1 = 21− 1

2n+1

for ∀n ≥ 0.

It is easy to see that on the basis of the relations
√

2 = a1 <
√

2a1 =

=
√

2
√

2 = a2, and

an+1 − an =
√

2an −
√

2an−1 =
2(an − an−1)√
2an +

√
2an−1
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we can prove by mathematical induction that the sequence is strictly increas-

ing, indeed.

(2) Since the sequence is strictly increasing, it has a greatest lower bound, and

thus an ≥ a1 =
√

2 for ∀n ≥ 1. On the basis of the display of the calculator

we have a suspicion that the least upper bound is 2, that is an < 2 for

∀n ≥ 1. This can be proved with the help of mathematical induction, as

a1 =
√

2 < 2, and if we suppose that an < 2, then an+1 =
√

2an <
√

2 · 2 = 2.

So an ∈ [
√

2, 2) for ∀n ≥ 1.

(3) Since the sequence (an)n≥1 is strictly increasing and bounded, the theorem

of Weierstrass yields that the sequence is convergent, that is, it has a limit.

This can be seen on the calculator getting the number 2 on its display after a

number of operations have been done. From this the equation limn→∞ an = 2

can be concluded. Indeed, we know that for all n ≥ 1, a2
n+1 = 2an is valid.

Thus, if limn→∞ an = a, then a satisfies the algebraic equation for a2 = 2a.

But an ≥ 1, (n ≥ 1), that is why a ≥ 1 and in this way a = 2. At the same

time another theorem is illustrated, according to which the least upper bound

of an increasing sequence is the limit of the sequence, in our case this is 2.

Experiment 4. The problem is the same as in the first two experiments,

with the exception that we take a number a > 0 instead of the value 2.

Solution. Executing the calculations in specific cases and observing the

shown values, we can see that after a number of steps the number a is shown

again. Every other result and the proof is the same as it was shown before, only

limn→∞ an = a changes according to a1 =
√

a. Summing up we proved that for

arbitrarily fixed a > 0,

lim
n→∞

√

a

√

a

√

. . . a
√

a

n−root sign

= a

namely

√

a
√

a
√

. . . a
√

a = a, where the number of the root signs is infinitely

large.

Experiment 5. Let’s type 2 into a pocket calculator and calculate its square

root. Add 2 to the result and calculate its square root again. Repeat this op-

eration until we get the same number reappearing on the display. What can we

say about the monotonicity, boundedness and limit of the sequence? How can we

explain what we can see?
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Solution. On the display of a pocket calculator which can only display 8

characters, in turns, we can see the following: 1.414135; 1.8477590; 1.9615705;

1.9903694; 1.9975909; 1.9993976; 1.9998494; 1.9999623; 1.9999905; 1.9999976;

1.9999994; 1.9999998; 1.9999999; 2; 2;2; . . . .

(1) The resulting sequence is strictly increasing, which we shall prove. The mem-

bers of the sequence in question are: a1 =
√

2, a2 =
√

2 + a1 =
√

2 +
√

2,

a3 =
√

2 + a2 =

√

2 +
√

2 +
√

2, and in general

an+1 =
√

2 + an =

√

2 +

√

2 +

√

2 + · · · +
√

2

(n+1)−root sign

for ∀n ≥ 0. We can see that in this case we get only a recursive relationship,

we cannot write the general member algebraically, as in the previous cases.

It is easy to see that on the basis of the relations a1 =
√

2 <
√

2 +
√

2 = a2,

and

an+1 − an =
√

2 + an −
√

2 + an−1 =
an − an−1√

2 + an +
√

2 + an−1

we can prove by mathematical induction that the sequence is strictly increas-

ing.

(2) Since the sequence is strictly increasing it has a greatest lower bound, and

thus an ≥ a1 =
√

2 for ∀n ≥ 1. On the basis of the calculator’s display we

believe that the least upper bound is 2, namely an < 2, for ∀n ≥ 1. This can

easily be proved by mathematical induction, because a1 =
√

2 < 2, and if we

suppose that an < 2, then an+1 =
√

2 + an <
√

2 + 2 = 2. So, an ∈ [
√

2, 2)

for ∀n ≥ 1.

(3) Because the sequence (an)n≥1 is strictly increasing and bounded, due to the

Weierstrass theorem, it is also convergent, i.e. it has a limit. This can be

seen on the calculator getting the number 2 on its display after a number of

operations have been completed. This means that the limn→∞ an = 2, which

is true, because if limn→∞ an = x, then limn→∞ an+1 = x is also true. The

limit satisfied an+1 =
√

2 + an so x =
√

2 + x ⇔ x2 −x− 2 = 0 giving x = 2,

because x = −1 /∈ [
√

2, 2). Therefore limn→∞ an = 2 which means, that

lim
n→∞

√

2 +

√

2 +

√

2 + · · · +
√

2

n−root sign

= 2
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or otherwise
√

2 +

√

2 +

√

2 + · · · +
√

2 + . . . = 2

where the number of root-signs is infinitely large.

Experiment 6. We take the number 6 instead of 2 in the previous exercise.

What can be said about the monotonicity, boundedness and limit of the sequence?

How can we explain what we can see?

Solution. The resulting sequence is a1 =
√

6, a2 =
√

6 + a1 =
√

6 +
√

6,

a3 =
√

6 + a2 =

√

6 +
√

6 +
√

6, and in general

an+1 =
√

6 + an =

√

6 +

√

6 +

√

6 + · · · +
√

6

(n+1)−root sign

for n ≥ 0. We are going to prove the same way as before that the sequence

is strictly increasing. Therefore the greatest lower bound is the first member,

namely an ≥ a1 =
√

6, for ∀n ≥ 1. This time we can see the least upper bound

is 3. We can easily prove this by mathematical induction, namely a1 =
√

6 < 3,

and if we suppose, that an < 3, then an+1 =
√

6 + an <
√

6 + 3 = 3. Therefore

an ∈ [
√

6, 3) for ∀n ≥ 1. Since the (an)n≥1 sequence is strictly increasing and

bounded, on the basis of the Weierstrass theorem the sequence is convergent, that

is, it has a limit. This can be seen on the display of the calculator showing the

number 3 after a number of operations. This means that limn→∞ an = 3, which

on the basis of a2
n+1 = 6 + an gives x2 − x − 6 = 0 which has only one positive

root, that being x = 3.

Remark 1. The reader is probably asking himself what kind of number we

should choose besides 2 and 6 so that limn→∞ an = k, would be a natural number.

The answer to this question is not that difficult, as the preceding sequences a1 =

=
√

a, a2
n+1 = a + an, a > 0 were defined recursively, and if we consider the limit

here, then we can see the result a = k2 − k = (k − 1)k. Thus, if a1 =
√

a and

a ∈ {1 · 2; 2 · 3; 3 · 4; . . . ; (k − 1)k; . . . }k∈N∗\{1} then the limits of the sequence

in question are going to be 2, 3, 4, . . . , k, . . . . Experiments similar to the previous

ones can be done.

Experiment 7. Let’s type 1 into a pocket calculator and calculate its square

root. Add 1 to the result and calculate its square root again. We shall repeat
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this operation until we get the same number reappearing on the display. What

can we say about the monotonicity, boundedness and limit of the sequence? How

can we explain what we can see?

Solution. On the display of a pocket calculator which can only display 8

characters, we can see the following: 1; 1.414135; 1.5537739, 1.5980531; 1.6118477;

1.6161212; 1.6174427; 1.6178512; 1.6179775; 1.6180165; 1.61802859; 1.6180323;

1.6180334; 1.6180338; 1.6180339; 1.6180339; 1.6180339; . . . . This time for

a “constant” number we didn’t get an integer value, but the number 1.6180339,

which is of course only a seven decimal approximation.

Our sequence this time is a1 =
√

1, a2 =
√

1 + a1 =
√

1 +
√

1 =
√

2, a3 =

=
√

1 + a2 =

√

1 +
√

1 +
√

1, and usually

an+1 =
√

1 + an =

√

1 +

√

+

√

1 + · · · +
√

1

(n+1)−root sign

for ∀n≥ 0. According to the computed values of the sequence it is conjectured to

be strictly increasing. This can be proved by mathematical induction similarly to

the previous cases with the

an+1 − an =
√

1 + an −
√

1 + an−1 =
an − an−1√

1 + an +
√

1 + an−1

relation. Since the sequence is strictly increasing, the greatest lower bound is

the first member, namely an ≥ a1 = 1, for ∀n ≥ 1. Our guess regarding the

upper bound is that an approximate value of the upper bound is 1.6180339. . . If

this proved to be correct, then the sequence would be monotonic and bounded,

thus there would exist limn→∞ an = x, which on the basis of a2
n+1 = 1 + an gives

x2 − x − 1 = 0, which has exactly one positive root of x = 1+
√

5
2 = 1.6180339 . . .

agreeing with the calculator. Thus, the least upper bound of the sequence is the
number 1+

√
5

2 = 1.6180339 . . . (this number is also called the golden ratio), and

we can prove this by induction, if we assume, that an < 1+
√

5
2 , then an+1 =

=
√

1 + an <

√

1 + 1+
√

5
2 = 1+

√
5

2 .

Remark 2. The preceding sequences a1 =
√

a, an+1 =
√

a + an, a > 0

were defined by a recursive relation. It can be easily proved, that this sequence is

strictly increasing and bounded. More precisely, for all n ≥ 1 an ∈
[√

a, 1+
√

4a+1
2

[

.

Therefore, the sequence is convergent as well, and if limn→∞ an= x, then this gives
x =

√
a + x ⇔ x2 − x− a = 0, which has a positive root x = 1+

√
4a+1
2 . Based on
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Remark 1, this limit will only be an integer number for a ∈ N ∗ if a = (k−1)k and

k ∈ N∗ \ {1}, in every other case it will be an irrational number (see for instance

in [1]).

Experiment 8. Let’s type the reciprocal of 1 into a pocket calculator and

add 1 to it. To the reciprocal of the result let’s add 1 again, and to the reciprocal

of this result add 1 for a third time. Repeat this operation until the number on the

display does not change. What can we say about the monotonicity, boundedness

and limit of the sequence? How can we explain what we can see?

Solution. On the display of a pocket calculator which can display only 8

characters, in turns, we can see the following: 2; 1.5000000; 1.6666666; 1.6000000;

1.6250000; 1.6153846; 1.6190476; 1.6176470; 1.6181818; 1.6179775; 1.6180555;

1.6180257; 1.6180371; 1.6180328; 1.6180344; 1.6180338; 1.6180340; 1.6180339;

1.6180339; 1.6180339; . . .

We defined the sequence as: a1 = 1, a2 = 1
a1

+ 1, a3 = 1
a2

+ 1, and in general

an+1 = 1
an

+ 1, for ∀n ≥ 1. If we follow the numbers on the display we can

see, that the sequence is neither increasing nor decreasing, but a1 < a3 < a5 <

· · · < a2k−1 < . . . and a2 > a4 > a6 > · · · > a2k > . . . i.e. the odd members

of the sequence form a subsequence which is strictly increasing, and the other

subsequence formed by the even members is strictly decreasing. We are going to

prove this result. The recursion shows that

an+2 − an =

(

1

an+1
+ 1

)

−
(

1

an−1
+ 1

)

=
1

an+1an−1anan−2
(an − an−2),

and we apply mathematical induction. Regarding boundedness, we can prove
that 1 < a2k−1 < 1+

√
5

2 < a2k < 2. Therefore the sequence is bounded, thus

due to the Weierstrass theorem, it is convergent, and so has a limit. Let there be

limn→∞ an = x, so based on the an+1 = 1
an

+1 recursion x = 1
x
+1 ⇔ x2−x−1 =

= 0, which has only one positive root x = 1+
√

5
2 ≈ 1.6180339 . . . . On the display

of the calculator, this value was got with a 7 decimal precision.

Remark 3. As in the previous experiment, in the place of a1 6= 1 we would

put any arbitrary number. The sequence will still be defined by an+1 = 1
an

+ a

recursion, and according to what we have proved before, the same results can be
derived with 1+

√
5

2 replaced by a+
√

a2+4
2 .

Remark 4. It is well known that we define the Fibonacci sequence as: f1 =

= f2 = 1 and fn+2 = fn+1 + fn for ∀n ≥ 1. We can produce a sequence of the
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ratios of two successive members from the Fibonacci sequence, namely
fk+1

fk

= ak

for ∀k ≥ 1. Then fn+2 = fn+1 + 1 ⇔ an+1 = 1
an

+ 1 that is to say, that we have

generated the sequence from the previous experiment. Based on that experiment,

the sequence produced of the ratios of two successive members from the Fibonacci
sequence is convergent and its limit is 1+

√
5

2 .

Finally, we will notice that the convergence of numerous other sequences

defined by first order recursion can be studied with a pocket calculator. For

the interested reader we recommend a study of the convergence of the sequences

defined by first order recursion in the cases offered below, using the model shown

before:

1) a1 = a ≥ 3
4 and an+1 =

√
4an − 3 for ∀n ≥ 1.

2) a1 = a > 0, k > 0, an+1 =
√

an + k for ∀n ≥ 1.

3) a1 > 0, k > 0, an+1 = 1
2

(

an + k
an

)

for ∀n ≥ 1.
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