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A Didactic Analysis of Merge Sort

Christian Rinderknecht

Abstract. Due to technical difficulties, educators teaching merge sort often avoid the
analysis of the cost in the general and average cases. Using basic discrete mathemat-
ics, elementary real analysis and mathematical induction, we propose a self-contained
derivation of bounds αn log2 n + βn + γ in all cases. Independent of any programming
language or pseudo-code, supported by intuitive figures, it is suitable for informatics
students interested in the analysis of algorithms. It is also a good exercise in showing
that induction allows us to actually discover constants, instead of simply checking them
a posteriori.
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Knuth [1] reports that the first computer program, designed in  by the

mathematician John von Neumann, was a sorting algorithm, nowadays called

merge sort. It is amongst the most widely taught sorting algorithms because it

epitomises the important solving strategy known as divide and conquer : the input

is split, each non-trivial part is recursively processed and the partial solutions are

finally combined to form the complete solution. Whilst merge sort is not diffi-

cult to program, determining its efficiency, by means of a cost function, requires
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advanced mathematical knowledge. Therefore, most textbooks [2, 3] only show

how to find the order of growth of an upper bound of the cost from recurrences it

satisfies when n is a power of 2, but the general case is often not presented in the

main chapters, or not at all, and precise analytic solutions are extremely difficult,

making use of complex analysis [4, 5, 6]. Amongst the several variants of merge

sort [7, 8], we will be dealing here with the most popular, called top-down merge

sort.

We derive lower bounds αn log2 n + βn + γ and upper bounds αn lg log2 n +

β ′n + γ ′ for the extremum and mean costs, relying only on basic discrete math-

ematics, intuitive figures, elementary real analysis and mathematical induction.

This is much more precise than using Bachmann’s notation and state O(n log2 n)

in all cases. Worse, this notation is often misconstrued by students, and occa-

sionally by professionals, when it is used on the main term of the asymptotic

expansion, as noted by Knuth already in : “Unfortunately, people have oc-

casionally been using the O-notation for lower bounds, for example when they

reject a particular sorting method ‘because its running time is O(n2).’ I have

seen instances of this in print quite often [...]” [9].

1. Merging

Merging consists in combining two ordered series of keys into one ordered

series. Without loss of generality, we shall be only interested in sorting keys in in-

creasing order, like merging (10, 12, 17) and (13, 14, 16) results in (10,12,13,14,16,

17) One way to achieve this consists in comparing the two smallest keys, output

the smallest and repeat the procedure until one of the series becomes empty, in

which case the other is wholly appended. We have (compared keys underlined):

{
10 12 17

13 14 16
→ 10

{
12 17

13 14 16
→ 10 12

{
17

13 14 16
→ 10 12 13

{
17

14 16
etc.

We depict a key from one series as a white node (◦) and a key from the other as a

black node (•). Nodes of these kinds are printed in a horizontal line, the leftmost

being the smallest. Comparisons are always performed between black and white

nodes and are represented as edges, for instance:

(1)
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An incoming arrow means that the node is smaller than the other end of the edge,

so all edges point leftward and the number of comparisons is the number of nodes

with an incoming edge. This number is none other than the cost of merging.

Minimum cost

In (1), there are two consecutive white nodes without any edges at the right

end, which suggests that the more keys from one series we have at the end of

the result, the fewer comparisons we needed for merging: the minimum cost is

achieved when the shorter series comes first in the result. Here, the cost is the

number of black nodes:

The minimum cost Bon

m,n when merging series of length m and n is

Bon

m,n = min{m, n}. (2)

Maximum cost

We can increase the number of comparisons with respect to m+n by removing

in (1) those rightmost nodes in the result that are not compared :

(3)

This maximises comparisons because all nodes, but the last, are the destination

of an edge. The maximum cost Won

m,n is the maximum number of comparisons

when merging series of length m and n:

Won

m,n = m + n − 1. (4)

Interchanging the two rightmost nodes in (3) leaves m + n − 1 invariant, so the

maximum number of comparisons occurs when the last two keys of the result come

from two series:

Average cost

The average of the costs of merging all pairs of series of given lengths defines

the average cost, assuming that keys are not repeated. Consider Figure 1, with

35 comparisons and 10 results, so the average cost is 35/10 = 7/2. In general,

there are
(

m+n
n

)

ways to interleave m white nodes with n black nodes, as it is the



“tmcs-rinderknecht” — 2013/10/10 — 16:06 — page 198 — #4

198 Christian Rinderknecht

Figure 1. All mergers with m = 3 (◦) and n = 2 (•)

same as the number of ways to pick n nodes amongst m + n. The total number

Km,n of comparisons needed to merge m and n keys in all possible manners with

our algorithm is the number of nodes with incoming edges. Let Km,n be the total

number of nodes without incoming edges, circled in Figure 2.

Figure 2. Counting vertically

This figure has been obtained by moving the third column of Figure 1 below

the second column and by removing the edges. Since, for each merger, there are

m+n nodes and each has an incoming edge or not, and because there are
(

m+n
n

)

mergers, we have Km,n + Km,n = (m + n)
(

m+n
n

)

. It is simple to characterise the

circled nodes: they make up the longest, rightmost contiguous series of nodes of

the same colour. Since there are only two colours, the problem of determining

the total number Wm,n of white circled nodes is symmetric to the determination

of the total number Bm,n of black circled nodes, that is, Bm,n = Wn,m. We also

obviously have Km,n = Wm,n + Bm,n = Wm,n + Wn,m, therefore

Km,n = (m + n)

(

m + n

n

)

− Wm,n − Wn,m.

We can decompose Wm,n by counting the circled white nodes vertically. In

Figure 2, W3,2 is the sum of the numbers of mergers with one, two and three

ending circled white nodes: W3,2 = 6 + 3 + 1 = 10. The first column yields

B3,2 = 4 + 1 = 5. In general, the number of mergers with one ending circled
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white node is the number of ways to combine n black nodes with m − 1 white

nodes:
(

n+m−1
n

)

. Similarly, the number of mergers with two ending circled

white nodes is
(

n+m−2
n

)

, etc. Therefore, using standard binomial identities [2],

we derive

Wm,n =

m−1∑

j=0

(

n + j

n

)

=

m−1∑

j=0

(

n + j

j

)

=

(

n + m

m − 1

)

=

(

m + n

n + 1

)

.

Then Km,n = (m + n)
(

m+n
n

)

−
(

m+n
n+1

)

−
(

m+n
m+1

)

. By definition, the average cost

Aon

m,n is the ratio of Km,n by
(

m+n
n

)

, therefore

Aon

m,n = m + n −
m

n + 1
−

n

m + 1
. (5)

2. Sorting 2n keys

Merging can be used to sort one series of keys as follows. The initial series

of keys is split in two, then the two pieces are split again etc. until singletons

remain. These are then merged pairwise etc. until only one series remains, which

is inductively sorted, since a singleton is a sorted series on its own and the merger

of two series is sorted if they are both sorted. The previous scheme leaves open

the choice of a splitting strategy and, perhaps, the most intuitive way is to cut

in two halves, which works well in the case of 2p keys. We will see in the next

section how to deal with the general case.

Here, let us consider in Figure 3 all the mergers and their relative order to

sort the series (7, 3, 5, 1, 6, 8, 4, 2). We name this structure a merge tree, because

the nodes of the tree are sorted series, either singletons or resulting from the

merging of its two children. The root logically holds the result. The merge tree

is best understood from a bottom-up, level by level examination. Let us note

(1, 2, 3, 4, 5, 6, 7, 8)

(1, 3, 5, 7)

(3, 7)

(7) (3)

(1, 5)

(5) (1)

(2, 4, 6, 8)

(6, 8)

(6) (8)

(2, 4)

(4) (2)

Figure 3. Sorting (7, 3, 5, 1, 6, 8, 4, 2)
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C2p the number of comparisons to sort 2p keys and consider a merge tree with

2p+1 leaves. It is made of two immediate subtrees with 2p leaves and the root

holds 2p+1 keys. Therefore

C1 = 0, C2p+1 = 2 · C2p + Con

2p,2p .

Unrolling the recursion, we arrive at

C2p+1 = 2p

p∑

k=0

1

2k
Con

2k,2k . (6)

Minimum cost

When the given series is already sorted, either in increasing or decreasing

order, the number of comparisons is minimum. In fact, given a minimum-com-

parison merge tree, any exchange of two subtrees whose roots are merged leaves

the number of comparisons invariant. This happens because the merge tree is

built bottom-up and the number of comparisons is a symmetric function. Let us

note B2p the minimum number of comparisons to sort 2p keys. From equations

(2) and (6), we draw

B2p = 2p−1

p−1∑

k=0

1

2k
Bon

2k,2k = p2p−1. (7)

Maximum cost

Just as with the best case, constructing a maximum-comparison merge sort

is achieved by making worst cases for all the subtrees, like (7, 3, 5, 1, 4, 8, 6, 2).

Let W2p be the maximum number of comparisons for sorting 2p keys. From

equations (4) and (6), we deduce

W2p = 2p−1

p−1∑

k=0

1

2k
Won

2k,2k = (p − 1)2p + 1. (8)

Average cost

For a given series, all permutations of which are equally likely, the average

cost of sorting it by merging is obtained by considering the average costs of all

the subtrees of the merge tree: all the permutations of the keys are considered for

a given length. Therefore, equation (6) is satisfied by the average cost A2p , that
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is, the average number of comparisons for sorting 2p keys. Besides, equation (5)

yields

Aon

n,n = 2n − 2 +
2

n + 1
.

Together with equation (6), we further draw, for p > 0,

A2p = 2p−1

p−1∑

k=0

1

2k
Aon

2k,2k = 2p

p−1∑

k=0

1

2k

(

2k − 1 +
1

2k + 1

)

= 2p

(

p −

p−1∑

k=0

1

2k
+

p−1∑

k=0

1

2k(2k + 1)

)

,

A2p = 2p

(

p −

p−1∑

k=0

1

2k
+

p−1∑

k=0

(

1

2k
−

1

2k + 1

)

)

= p2p − 2p

p−1∑

k=0

1

2k + 1

= p2p − 2p
∑

k>0

1

2k + 1
+ 2p

∑

k>p

1

2k + 1
= p2p − α2p +

∑

k>0

1

2k + 2−p
,

where α :=
∑

k>0
1

2k+1
' 1.264500 is irrational [10]. Since 0 < 2−p < 1, we have

1/(2k + 1) < 1/(2k + 2−p) < 1/2k and we conclude

(p − α)2p + α < A2p < (p − α)2p + 2. (9)

The uniform convergence of the series
∑

k>0
1

2k+2−p allows us to interchange the

limits on k and p and deduce that A2p − (p − α)2p − 2 → 0−, as p → ∞. In

other words, A2p is best approximated by its upper bound, for large values of p.

3. Merge Sort

In general, merge sort consists in splitting a series in two series of equal or

almost equal lengths, which are in turn recursively sorted, except for the singleton,

and merged. The number of comparisons Cn hence satisfies

C0 = C1 = 0, Cn = Cbn/2c + Cdn/2e + Con

bn/2c,dn/2e, (10)

where bxc (floor of x) is the greatest integer less than or equal to x, and dxe (ceiling

of x) is the least integer greater than or equal to x. So we have n = bn/2c+dn/2e.

Minimum cost

We have Bn = Bbn/2c + Bdn/2e + bn/2c from equations (2) and (10). Let

∆n := Bn+1 −Bn and find some constraints on it. Because of the floor and ceiling

functions of n/2, we consider two complementary cases.
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• If n = 2p, then B2p = 2 · Bp + p and B2p+1 = Bp + Bp+1 + p. Therefore,

∆2p = ∆p. Also ∆0 = 0.

• If n = 2p + 1, then B2p+2 = 2 · Bp+1 + p + 1. Thus, ∆2p+1 = ∆p + 1.

20 1

21 10
11

22 100
101
110
111

23 1000
1001
1010
1011
1100
1101
1110
1111

.

.

.

.

.

.

2blgnc . . .
.

.

.

n

Figure 4

If we think in terms of binary representations, ∆n is the

number of 1-bits or, equivalently, the sum of the bits of n. It

is usually noted νn and called bit sum. So Bn+1 = Bn + νn,

therefore

Bn =

n−1∑

k=0

νk. (11)

Equation (7) is B2p = 1
2
p2p, that is, Bn = 1

2
n log2 n when

n = 2p. This should prompt us to look, like McIlroy [11],

for an additional linear term in the general case, that is, the

greatest real constants a and b such that, for n > 2,

L(n) : 1
2
n log2 n + an + b 6 Bn, (12)

where log2 n is the binary logarithm of n. The base case is

simply L(2) : 2a + b 6 0. The most obvious way to structure

the inductive argument is to follow the definition of Bn when

n = 2p and n = 2p + 1, but a bound on B2p+1 would rely on

bounds on Bp and Bp+1, compounding imprecision. Instead,

if we could have at least one exact value from which to induc-

tively build the bound, we would gain accuracy. Therefore,

we may expect a better bound if we can find a decomposition

of B2p+i, where 0 < i 6 2p, in terms of B2p (exact) and Bi.

This is easy if we count the bits in Figure 5, which is the

same as the table in Figure 4, where n = 2p + i. (Keep in mind that Bn is the

sum of the bits up to n − 1, as seen in equation (11).) We find:

B2p+i = B2p + Bi + i.

(The term i is the sum of the leftmost bits.) Therefore, let us assume L(n), for

all 1 6 n 6 2p, and prove L(2p + i), for all 0 < i 6 2p. The induction principle

entails then that L(n) holds for all n > 2. The inductive step L(2p + i) should

give us the opportunity to maximise the constants a and b. Let m = 2p. Using

B2p = 1
2
p2p from equation (7) and the inductive hypothesis L(i), we have

1
2
m log2 m + (1

2
i log2 i + ai + b) + i 6 Bm + Bi + i = Bm+i. (13)
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Bits of n n

0 0 . . . 0 0
... B2p

...
0 1 . . . 1 2p − 1

1 0 . . . 0 2p

... Bi

...
1 . . . 2p + i− 1

2p + i

Figure 5. B2p+i = B2p + Bi + i

We need now to find a and b such that the inductive step L(m + i) holds as well,

that is, 1
2
(m + i) log2(m + i) + a(m + i) + b 6 Bm+i. Using (13), this is implied

by

1
2
(m + i) log2(m + i) + a(m + i) + b 6 1

2
m log2 m + (1

2
i log2 i + ai + b) + i.

We can already notice that this inequality is equivalent to

1
2
m log2(m + i) + 1

2
i log2(m + i) + am 6

1
2
m log2 m + 1

2
i log2 i + i. (14)

But 1
2
m log2(m + i) > 1

2
m log2 m and 1

2
i log2(m + i) > 1

2
i log2 i, therefore the

constant a we are seeking must satisfy am 6 i for all 0 < i < m, hence a < 0.

We extend i over the real numbers by defining i = x2p = xm, where x is a

real number such that 0 < x 6 1. By replacing i by xm in inequality (14), we

obtain
1
2
(1 + x) log2(1 + x) + a 6 1

2
x log2 x + x.

Let Φ(x) := 1
2
x log2 x − 1

2
(1 + x) log2(1 + x) + x. Then, this is equivalent to

a 6 Φ(x).

The function Φ can be continuously extended at 0, as limx→0 x log2 x = 0,

and it is differentiable on the interval ]0, 1]:

dΦ

dx
=

1

2
log2

4x

x + 1
. (15)

The root of dΦ/dx = 0 is 1/3, and the derivative is negative before, and positive

after. Therefore, amax := min0<x61 Φ(x) = Φ(1
3
) = −1

2
log2

4
3

. The base case

was b 6 −2a, therefore bmax := −2amax = log2
4
3

. Finally,

1
2
n log2 n −

(

1
2

log2
4
3

)

n + log2
4
3

6 Bn, (16)
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where 1
2

log2
4
3
' 0.2075 and log2

4
3
' 0.415. Importantly, the lower bound is tight

if x = 1/3, that is, when 2p + i = 2p + x2p = (1 + 1/3)2p = 2p+2/3, or, in general,

2k/3. The nearest integers are b2k/3c and d2k/3e, so we should find out which

one minimises Bn − 1
2
n log2(3

4
n), because we have 1

2
n log2 n −

(

1
2

log2
4
3

)

n =
1
2
n log2(3

4
n). It is tedious to prove that the lower bound is tight if n = 2 (from

the base case) and is otherwise the sharpest when n = (1010 . . . 01)2 or n =

(1010 . . . 1011)2 . As a whole, these values constitute the Jacobsthal sequence,

defined as

J0 = 0; J1 = 1; Jn+2 = Jn+1 + 2Jn, for n > 0.

Let us use now the same inductive approach to find a good upper bound to

Bn, that is, we want to minimise the real constants a ′ and b ′ such that, for n > 2,

Bn 6 1
2
n log2 n + a ′n + b ′.

The only difference with the search for the lower bound is that inequalities are

reversed, so we want

Φ(x) 6 a ′, where Φ(x) := 1
2
x log2 x − 1

2
(1 + x) log2(1 + x) + x.

Here, we need to find the maximum of Φ on the closed interval [0, 1]. The two pos-

itive roots of Φ are 0 and 1, and Φ is negative between them (see equation (15)).

Therefore a ′min := max0<x61 Φ(x) = Φ(1) = 0. From the base case, we deduce

b ′min = −2amin = 0. Therefore, we have the bounds

1
2
n log2 n −

(

1
2

log2
4
3

)

n + log2
4
3

6 Bn 6
1
2
n log2 n. (17)

The upper bound is clearly tight when n = 2p because of equation (7). Obvi-

ously, Bn ∼ 1
2
n log2 n, where f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1, but if we

were only interested in this asymptotic result, Bush [12] gave a simpler count-

ing argument on the bits in Figure 4. Delange [13] investigated Bn by means of

advanced real analysis and showed that Bn = 1
2
n log2 n + F0(log2 n) · n, where

F0 is a continuous, nowhere differentiable function of period 1, and whose Fourier

series shows the mean value to be about −0.145599.

Maximum cost

The maximum number of comparisons satisfies

W0 =W1 = 0, Wn =Wbn/2c +Wdn/2e +Won

bn/2c,dn/2e.

Equations (4) and (10) yield Wn =Wbn/2c +Wdn/2e + n − 1 and

W0 =W1 = 0; W2p = 2Wp + 2p − 1, W2p+1 =Wp +Wp+1 + 2p.
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Let the difference of two successive terms be ∆n :=Wn+1 −Wn. If we know ∆n,

we know Wn because
∑n−1

k=1 ∆k =
∑n−1

k=1 Wk+1 −
∑n−1

k=1 Wk =Wn −W1 =Wn.

We remark that

• if n = 2p, then ∆2p = ∆p + 1,

• otherwise n = 2p + 1 and W2p+2 = 2 · Wp+1 + 2p + 1, so ∆2p+1 = ∆p + 1.

In summary, ∆0 = 0 and ∆n = ∆bn/2c+ 1. If we start unravelling the recurrence,

we get ∆n = ∆bbn/2c/2c + 2 = ∆bn/22c + 2. (See [14, Exercise 1.2.4.35].) By

iteration, we deduce ∆n = m, with m being the largest natural number such that

bn/2mc = 0. In other words, m is the number of bits in the binary notation of n.
That number is found by setting n :=

∑m−1

i=0 bi2
i, where the bi ∈ {0, 1} are the

bits and bm−1 = 1. Then

2m−1
6 n < 2m ⇒ m − 1 6 log2 n < m ⇒ m = blog2 nc+ 1 = ∆n. (18)

We already know that Wn =
∑n−1

k=1 ∆k, therefore, with (18), we conclude that

Wn =

n−1∑

k=1

(blog2 kc + 1). (19)

Whilst the minimum cost is the number of 1-bits up to n−1, we find now that the

maximum cost is the total number of bits up to n−1. Informally, this leads us to

bet that Wn ∼ 2 · Bn ∼ n log2 n, since we would expect the number of 0-bits and

1-bits to be the same in average. Consider again the bit table in Figure 4. The

greatest power of 2 smaller than n is 2blog2 nc because it is the binary number

(10 . . . 0)2 having the same number of bits as n; it thus appears in the same

section of the table as n. The trick consists in counting the bits in columns, from

top to bottom, and leftwards. In the rightmost column, we find n bits. In the

second column, from the right, we find n − 21 + 1 bits. The third from the right

contains n−22 +1 bits etc. until the leftmost column containing n−2blog2 nc+1

bits. The total number of bits in the table is
n∑

k=1

(blog2 kc+ 1) =

blog2 nc∑

k=0

(n − 2k + 1) = (n + 1)(blog2 nc + 1) − 2blog2 nc+1 + 1.

Let n := (bm−1 . . . b0)2, then 2m−1 6 n 6 2m − 1 and 2m−1 < 2m−1 + 1 6

n + 1 6 2m, so m − 1 < log2(n + 1) 6 m, that is, m = dlog2(n + 1)e. Using

eq. (18), we deduce 1+blog2 nc = dlog2(n + 1)e. As a consequence, equation (19)

can be rewritten as

W0 =W1 = 0, Wn = ndlog2 ne− 2dlog2 ne + 1. (20)
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This equation is subtler than it seems, due to the periodicity hidden in 2dlog2 ne.
Depending on whether n = 2p or not, two cases arise:

• if n = 2p, then Wn = n log2 n − n + 1;

• otherwise, we have dlog2 ne = blog2 nc+ 1 = log2 n − {log2 n} + 1 and Wn =

n log2 n + θ(1 − {log2 n}) ·n + 1, with θ(x) := x − 2x and {x} := x − bxc is the

fractional part of the real x. In particular, we have 0 6 {x} < 1. The derivative

is θ ′(x) = 1 − 2x log 2; it has one root θ ′(x0) = 0 ⇔ x0 = − log2 log 2 and

it is positive before x0, and negative after. Accordingly, θ(x) reaches its

maximum at x0: max0<x61 θ(x) = θ(x0) = −(1 + log log 2)/log 2 ' −0.9139,

and min0<x61 θ(x) = θ(1) = −1. By injectivity, θ(1) = θ(1−{log2 n}) implies

{log2 n} = 0, that is, n = 2p (first case).

Hence Wn = n log2 n + A(log2 n) · n + 1, where A(x) := 1 − {x} − 21−{x} is a

periodic function, since A(x) = A({x}), such that −1 6 A(x) < −0.91. Further

analysis of A(x) requires Fourier series or complex analysis; its mean value is

about −0.942695.

n log2 n − n + 1 6Wn < n log2 n − 0.91n + 1. (21)

The lower bound is attained when n = 2p. The upper bound is most accurate

when {log2 n} = 1 + log2 log 2, that is, when n is the nearest integer to 2p log 2

(take the binary expansion of log 2, shift the point p times to the right and round).

Of course, Wn ∼ n log2 n.

Average cost

Let An be the average number of comparisons to sort n keys top-down. All

permutations of the input series being equally likely, equation (10) becomes

A0 = A1 = 0, An = Abn/2c +Adn/2e +Aon

bn/2c,dn/2e,

which, with equation (5), in turn implies

An = Abn/2c +Adn/2e + n −
bn/2c
dn/2e+ 1

−
dn/2e
bn/2c+ 1

. (22)

Difference equations are not helpful here, so we should try an inductive approach

instead, as we did for finding bounds on Bn. Inequalities (9) are equivalent to

n log2 n − αn + α < An < n log2 n − αn + 2 where n = 2p, and this suggests us

to also look for bounds of the form n log2 n + an + b when n 6= 2p.

Let us start with the lower bound and set to maximise the real constants

a and b in

H(n) : n log2 n + an + b 6 An, for n > 2.
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Since H(2p) depends on H(p), and H(2p+1) depends on H(p) and H(p+1), the

property H(n), for any n > 1, transitively depends on H(2) alone, because we are

iterating divisions by 2. H(2) is equivalent to

2a + b + 1 6 0. (23)

Because the definition of An depends on the parity of n, the inductive step will

be twofold. Let us assume H(m) for m < 2p, in particular, we suppose H(p),

which, with the expression of A2p from equation (22), entails

(2p log2 p + 2ap + 2b) + 2p − 2 +
2

p + 1
6 A2p.

We want H(2p) : 2p log2(2p) + 2ap + b = 2p log2 p + 2ap + 2p + b 6 A2p, which

holds if the following condition does:

2p log2 p + 2ap + 2p + b 6 2p log2 p + 2ap + 2b + 2p − 2 +
2

p + 1
,

which is equivalent to

2 −
2

p + 1
=

2p

p + 1
6 b.

Let Φ(p) := 2p/(p + 1). This function is strictly increasing for p > 0 and

Φ(p) → 2−, as p → +∞.

The other inductive step deals with the odd values of n. We assume H(m)

for all m < 2p + 1, in particular, we suppose H(p) and H(p + 1), which, with the

expression of A2p+1 from equation (22), implies

(p log2 p+ap+b)+((p+1) log2(p+1)+a(p+1)+b)+2p−1+
2

p + 2
6 A2p+1,

which may be simplified slightly into

p log2 p + (p + 1) log2(p + 1) + a(2p + 1) + 2b + 2p − 1 +
2

p + 2
6 A2p+1.

We want to prove H(2p + 1) : (2p+1) log2(2p+1)+a(2p+1)+b 6 A2p+1, which

is thus implied by

(2p + 1) log2(2p + 1) 6 p log2 p + (p + 1) log2(p + 1) + b + 2p − 1 +
2

p + 2
. (24)

Let Ψ(p) := (2p+1) log2(2p+1)−(p+1) log2(p+1)−p log2 p−2p+1−2/(p+2).

Then (24) is equivalent to Ψ(p) 6 b. Furthermore,

dΨ

dp
(p) =

2

(p + 2)2
+ log2

4p2 + 4p + 1

p2 + p
− 2 =

2

(p + 2)2
+ log2

(

1 +
1

4p(p + 1)

)

.
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Clearly, dΨ/dp > 0, for all p > 0, so Ψ(p) is strictly increasing for p > 0. Let us

find limp→+∞ Ψ(p) by rewriting Ψ(p) as follows:

Ψ(p) = 2 −
2

p + 2
+ (2p + 1) log2(p + 1

2
) − (p + 1) log2(p + 1) − p log2 p

= 2 −
2

p + 2
+ p

(

log2(p + 1
2
)2 − log2(p + 1) − log2 p

)

+ log2(p + 1
2
)

− log2(p + 1)

= 2 −
2

p + 2
+ p log2

(

1 +
1

4p(p + 1)

)

+ log2

p + 1/2

p + 1
.

The limit of x log(1+ 1/x2) as x → +∞ can be found by changing x into 1/y and

considering the limit as y → 0+, which is shown by l’Hôpital’s rule to be 0. This

result can be extended to apply to the large term in Ψ(p) and, since all the other

variable terms converge to 0, we can conclude that Ψ(p) → 2−, as p → +∞.

Because we need to satisfy the conditions Ψ(p) 6 b and Φ(p) 6 b for both

inductive steps to hold, we have to compare Ψ(p) and Φ(p), when p is a natural

number: we have Φ(1) < Ψ(1) and Φ(2) < Ψ(2), but Ψ(p) < Φ(p) if p > 3.

Therefore, for b not to depend on p, we need it to be greater than 2, the smallest

upper bound of Φ and Ψ. Inequality (23) means that we need to minimise b in

order to maximise a (which is the priority), so we settle for the limit: bmin = 2,

and the same inequality entails a 6 −3/2, hence amax = −3/2. The principle of

complete induction finally establishes that, for n > 2,

n log2 n −
3

2
n + 2 < An. (25)

This bound is not excellent, but it was not too hard to obtain. We may recall the

lower bound when n = 2p, in (9): n log2 n − αn + α < An, where α ' 1.264499.

In fact, Flajolet and Golin [4] proved

n log2 n − αn < An. (26)

Asymptotically, that bound is, up to the linear term, the same as for the case

n = 2p. Our inductive method cannot reach this nice result because it yields

sufficient conditions that are too strong, in particular, we found no obvious way

to get the decomposition A2p+i = A2p +Ai + . . .

Now, let us find the smallest real constants a ′ and b ′ such that for n > 2,

An 6 n log2 n + a ′n + b ′. The base case of H(n) in (23) is here reversed:

2a ′ + b ′ + 1 > 0. Hence, in order to minimise a ′, we need to maximise b ′.
Furthermore, the conditions on b ′ from the inductive steps are reversed as well
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with respect to b: b ′ 6 Φ(p) and b ′ 6 Ψ(p). The base case is H(2), that is,

p = 1, and we saw earlier that Φ(1) 6 Ψ(1), thus we must have b ′ 6 Φ(1) = 1.

The maximum value is thus b ′max = 1. Finally, this implies that a ′ > −1, thus

a ′min = −1.

Gathering the bounds, we hence established that

n log2 n −
3

2
n + 2 < An < n log2 n − n + 1.

Trivially, we have An ∼ n log2 n ∼ Wn ∼ 2 · Bn. Flajolet and Golin [4] proved,

using complex analysis the following very strong result:

An = n log2 n + B(log2 n) · n + O(1),

where B is continuous, non-differentiable, periodic with period 1, of mean value

−1.2481520. The notation O(1) is an instance of Bachmann’s notation for an

unknown positive constant. The maximum of B(x) is approximately −1.24075, so

An = n log2 n − (1.25 ± 0.01) · n + O(1).

4. Conclusion

We have shown that it is possible to obtain good bounds on the minimum,

maximum and average number of comparisons of merge sort without resorting

to advanced real analysis, like Fourier analysis, nor complex analysis, like Mellin

transforms. Whilst these powerful techniques indeed bring the best results, they

are not suitable for postgraduate students in informatics who are introduced to

sorting algorithms.

Bachmann’s O notation is often misused for lower bounds and it is deceptively

simple because it must be abused to be really useful and it seems to conflict with

algebra over numbers. Using the Θ notation when possible is better, but the extra

work of doing so then may become on par with determining asymptotic equiva-

lences, where multiplicative constants are explicit. It is probably an overkill for

most students to find out the exact linear coefficients, but, for the most motivated,

this paper shows how to do so at the cost of slightly less precision sometimes.
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