
“tmcs-panovics” — 2013/9/27 — 9:03 — page 165 — #1

11/2 (2013), 165–180

Motivating Students with Projects

Encompassing the Whole Duration of

Their Studies

János Pánovics

Abstract. Based on my ten years of teaching experience at the University of Debrecen,
I can say that students majoring Software Information Technology BSc have to face
a number of difficulties during their studies. I think these difficulties root from two
main problems: students are unmotivated and cannot sense the coherence between the
knowledge acquired in the various courses. This paper tries to give some alleviation to
both of these problems by the idea of introducing some long-term projects to students,
which they can work on throughout their studies, dealing with a particular aspect of
the projects in each course.

Key words and phrases: teaching methodology, motivation, coherence, long-term proj-
ects.

ZDM Subject Classification: D70.

1. Introduction

For the last few years, most of the students majoring in some area of computer

science at the University of Debrecen have been having a hard time fulfilling the

requirements of most nonbasic courses. This is partly because of the big number

of students. (It is out of the scope of this paper why we need to have so many stu-

dents.) First, we have to launch many practical courses for the same subject with

many students in each of them. Due to this, we need many instructors (including

student instructors), who have to deal with a lot of students and have much less

time to deal with each of them individually. Second, a lot of the students come

to our university not because of their interest in computer science but for other

Copyright c© 2013 by University of Debrecen



“tmcs-panovics” — 2013/9/27 — 9:03 — page 166 — #2

166 János Pánovics

reasons (like parental pressure, the popularity of information technology, good

job prospects, or simply because they misunderstand the program objectives),

and therefore they are often undermotivated.

On the other hand, mass education is not the only reason for “mass failure”

and poor performance. I believe that we, the instructors, do have some influence

on the outcome of the education. The key is to find a way to pique students’

interest. We can do this by assigning them tasks in which they are interested.

Creating a two-player game with competitive artificial intelligence and a graphi-

cal front-end, writing a library information system that keeps track of data about

books, patrons, and loans, or creating a web-based network analysis tool which

computes different statistical data about network traffic may be such tasks. For

example, we can read about the idea of using Reversi as a teaching tool in [9],

teaching fundamental programming concepts via two-dimensional game develop-

ment in [6], or using physical and virtual models of discrete games to help students

learn the fundamental concepts and problem solving strategies in computer sci-

ence in [1]. In particular, two computer games are used to teach the concepts of

boolean expressions and recursion in [4]. Even abstract knowledge of mathemat-

ical logic can be presented through playful tasks [8]. Whatever the task is about,

the secret is that it should be a large-scale project, which covers more (or even

most) of the subjects students encounter during their studies. Throughout the

project work, they apply the knowledge discussed in the lectures and practical

courses of the related core subjects. They learn the applicability and usability of

the topics of each subject as well as the problems emerging during the application

of that knowledge. I think that if we can find appropriate assignments, we may

achieve better performance not only in solving the assignments but also in the

final examinations of the courses.

Defining assignments related to developing real-world applications has the

following benefits:

• Compelling examples increase students’ motivation.

• Via a complex project, students can practice a number of aspects of computer

science.

• Using the same complex project in more courses will help students better

understand the relationship between the knowledge behind those courses.

• Projects make computer science education more practice-oriented.

• Projects validate the theoretical knowledge acquired during the lectures and

answer the question of how to use that knowledge.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 167 — #3

Motivating Students with Long-Term Projects 167

I would like to emphasize that the idea of project-oriented education is al-

ready applied in most graduate (master) programs of computer science at most

Hungarian universities. According to the current act on higher education, even

undergraduate programs must contain some amount of project work. We can see

a good example of this at the Eötvös Loránd University, Faculty of Informatics,

where students can participate in a cooperative training for 16 credits [2]. The

goal of the cooperative training is to provide students with the possibility of get-

ting acquainted with the practical side of computer science under the supervision

of experienced professionals at real companies in the software industry. Another

example is the subject titled Project Laboratory at the Budapest University of

Technology and Economics, Faculty of Electrical Engineering and Informatics [7]

or at the University of Debrecen, Faculty of Informatics, where students may

deepen their knowledge and get some experience in a specific field of computer

science.

There are, however, some important differences between the proposed ap-

proach of “teaching with projects” and the above-mentioned examples:

• Both cooperative training and the Project Laboratory courses are independent

from the core subjects of an undergraduate program in the sense that they

are separate educational units. According to my proposal, the projects would

form a part of the course materials of most core subjects, so students can work

on projects in the frame of the existing subjects, and no separate subjects or

trainings are required.

• While cooperative training and the Project Laboratory courses focus on only

one or two areas of computer science, the proposed approach covers the topics

of most core subjects.

• Cooperative training and the Project Laboratory subject both have strict pre-

requisites, i.e., they are based on knowledge acquired during earlier studies.

However, using the proposed approach, students start working on projects

as early as the first semester. This also means that instructors have to deal

with a lot more students, who have not participated in project works before.

On the other hand, instructors may also be inexperienced in project man-

agement, and they need to cooperate with one another in order to achieve a

better result.

• Although cooperative training is a part of education, the institute forfeits

its right to control the flow of the training and the assessments. Another

drawback is that it is not so easy to find the necessary number of companies

with appropriate projects outside the capital.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 168 — #4

168 János Pánovics

2. Current Program Requirements

Let’s first have a look at the requirements of the Software Information Tech-

nology BSc major. The program lasts for 6 semesters, and students have to gather

a total of 180 credits according to the following list:

• 120 credits from core subjects
• 29 credits from compulsory elective subjects
• 11 credits from elective nonvocational subjects
• 20 credits from the thesis

Table 1 contains the full list of the core subjects with credit numbers, contact

hours, prerequisites, and recommended semesters [3].

Sub-
ject
code

Subject name
Cred-

it
Lec-
tures

Semi-
nars

Labs
Pre-

requi-
sites

Recom-
mended
semester

CS101 Discrete Mathematics 1 5 2 2 1

CS111 Calculus 1 5 2 2 1

CS401 Logic in Computer Science 5 2 2 1

CS201 Introduction to Informatics 5 2 2 1

CS202 HTML, XML 2 2 1

CS711 Computer Architectures 5 2 2 1

CS102 Discrete Mathematics 2 5 2 2 CS101 2

CS112 Calculus 2 5 2 2 CS111 2

CS131
Probability Theory
and Statistics

5 2 2
CS101
CS111

2

CS421
Data Structures
and Algorithms

5 2 2 CS201 2

CS301 Programming Languages 1 5 2 2 CS201 2

CS211 Operating Systems 1 5 2 2 CS201 2

CS411
Automata and
Formal Languages

5 2 2 CS101 3

CS302 Programming Languages 2 5 2 2 CS301 3

CS212 Operating Systems 2 5 2 2 CS211 3

CS501 Database Systems 5 2 2 CS301 3

CS601
Introduction to
Computer Graphics

5 2 2
CS101
CS301

3

CS141 Numerical Methods 5 2 2 CS102 3

CS441
Introduction to
Artificial Intelligence

5 2 2

CS302
or

(CS301
and

CS401)

4

CS311 Programming Environments 2 2 CS302 4

CS321 Programming Technologies 5 2 2 CS302 4

CS721
Computer Network
Architectures and Protocols

5 2 2
CS711
CS212

4



“tmcs-panovics” — 2013/9/27 — 9:03 — page 169 — #5

Motivating Students with Long-Term Projects 169

Sub-
ject
code

Subject name
Cred-

it
Lec-
tures

Semi-
nars

Labs
Pre-

requi-
sites

Recom-
mended
semester

CS511 Database Administration 3 2 CS501 5

CS521
Technology of
System Development

5 2 2 CS321 5

CS001 Thesis 1 10 CS321 5

CS451
Algorithm Design
and Analysis

5 2 2
CS401
CS411

6

CS231 Internet Tools and Services 3 2 CS521 6

CS002 Thesis 2 10 CS321 6

Table 1: Core subjects

The compulsory elective subjects are divided into five subject groups (called

blocks), each containing four subjects with a total of 16–18 credits. These blocks

cover the following areas: Artificial Intelligence, Database Systems, Operating

Systems and Networks, Computer Graphics, and Information Theory and Ap-

plied Mathematics. Students have to complete at least one subject from each

of these blocks. The remaining credits needed for the 29 credits can be earned

by completing other subjects from the blocks or additional elective vocational

subjects launched by the faculty at the beginning of each semester.

As you can see, students have to take and complete at least 37 subjects during

their studies, which is a rather big number for only 6 semesters. I think that some

of these subjects should be a part of graduate programs, and others (the basic

subjects) should get more emphasis with more contact hours.

However, even if we insist on this study plan, we may still find projects that

involve a number of the listed areas. Let’s now have a look at a couple of examples.

3. Some Possible Projects

If we take a closer look at Table 1, we can soon realize that even a medium-

sized software development project needs some knowledge from at least three core

subjects. We can state this based merely on the names of the subjects, without

knowing the detailed topics of them and without knowing the goal of the applica-

tion to be developed. The three most basic subjects, which are involved in every

software development project, are Introduction to Informatics, Data Structures

and Algorithms, and Programming Languages 1. However, most of the other core

subjects may also be involved in a long-term project.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 170 — #6

170 János Pánovics

In this section, I would like to present two projects of medium difficulty, parts

of which may be used as assignments from as early as the first semester.

3.1. Project #1: Creating a Reversi Application

Of course, Reversi may be replaced by any (not too difficult) two-player game

here. The main goals of this project are the following:

• To learn some basic programming idioms in at least one programming lan-

guage.

• To learn how to represent the data structures used during the implementation

as well as the algorithms that work with them.

• To learn some basic artificial intelligence methods that are good enough to

beat at least a weak human player.

For the assignments to make sense, I briefly introduce the rules of the game

[5]. Reversi (or Othello) is a strategy board game for two players, played on an

8 × 8 uncheckered board with 64 pieces colored differently on each side, which

correspond to the opponents of a game. The color facing up indicates which of the

two players controls the square occupied by the piece. The game begins with the

central four squares occupied: each player controls one of the diagonals. Players

take turns placing pieces on the board with their assigned color facing up until

neither can make a move (usually when all 64 squares are occupied). The player

who controls the most squares is the winner. A legal move must be to an empty

square and must bracket at least one of the opponent’s pieces in a straight line

between an existing piece of the player in turn and the newly played piece. Upon

moving to that square, all of the bracketed opponent’s pieces are flipped, in all 8

directions. If a player has no legal move, they must pass, and their opponent will

move. If a player has a legal move, they must make it even if it hurts their game.

Here is the list of subjects that may be affected by this project, along with

topics of interest and example assignments regarding each subject:

• Discrete Mathematics 1 : This is a subject with topics from set algebra, lin-

ear algebra, number theory, and combinatorics. We can say that almost

all projects require some mathematical knowledge, though not necessarily

in-depth knowledge. In the seminars, students can be asked combinatorial

questions regarding the Reversi game. Example assignments for this subject

include the following:

– How many arrangements of an 8× 8 board are possible?



“tmcs-panovics” — 2013/9/27 — 9:03 — page 171 — #7

Motivating Students with Long-Term Projects 171

– How many games in a 6× 6 board are possible?

• Introduction to Informatics : During the lectures, students learn the basic

concepts that are essential for everyone with a degree in computer science.

They learn, among others, about hardware and software, data representa-

tion, and basic searching and sorting algorithms. In the laboratories, they

practice data representation and start writing simple programs in C. As for

the project, the instructors may show how integers, real numbers, characters,

strings, or other basic data may be represented in the memory. Although this

knowledge is not essential for creating our application, I agree with those who

say that data representation is a basic building stone of informatics without

which the operation of a computer cannot be understood. Another signif-

icant result of this subject is that students write their first C programs so

they can begin experimenting with the language. I think it is very important

to start writing programs as soon as possible because it takes some time to

get accustomed to using the language features for someone who has never

seen a high-level program code before. Example assignments for this subject

include the following:

– Suppose we later want to write a function H(b, p) = P(b, p)+8E(b, p)+

64C(b, p) where b is the board, p is one of the players, P(b, p) computes

the number of pieces p has on board b, E(b, p) computes the number of

edge pieces p has on board b, and C(b, p) computes the number of corner

pieces p has on board b. Suggest a representation of the value of H(b, p)

considering its minimum and maximum possible value.

– Create a well-formed text document containing the rules of Reversi as

well as the schedule of a Reversi tournament.

• HTML, XML: As the name suggests, this subject deals with the syntax and

use of these two important markup languages. Students learn how HTML

can be used to create simple, static web pages, and how XML can be used

to store almost any kind of hierarchically organized data. The knowledge

provided by this subject can be useful for any project because all projects

may make use of a simple web page or an XML database. In our case, we

can store, for example, a game flow in an XML file. Example assignments for

this subject include the following:

– Create a simple static HTML website containing information about our

future Reversi game (e.g., the game rules).

– Design an XML data structure (DTD) for storing the game flow.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 172 — #8

172 János Pánovics

• Logic in Computer Science: Mathematical logic is used in a number of areas

in computer science. In this introductory course, students learn about first-

order predicate calculus. It is a big problem that a lot of students do not

see at this point why this subject is important, and where they can use the

acquired knowledge in the future. The instructors should explain them that

all programming languages use conditions, and that conditions are actually

logical formulae with all of their properties. Students should know how logical

operators (such as implication or the universal quantifier) can be implemented

in a programming language that does not implicitly contain those operators.

As no laboratory belongs to this subject, these tasks are usually completed

only during Introduction to Artificial Intelligence lessons. Other concepts

that also occur during programming are those of free and bound variables,

which may be implemented using parameters and local variables, respectively.

Mathematical logic also plays a role in other subjects like Database Systems or

Introduction to Artificial Intelligence. Example assignments for this subject

include the following:

– Create a new first-order language with syntax and semantics which can

be used to express different elements of the Reversi game. The language

may include functions like the number of each player’s pieces or the num-

ber of empty squares, and atomic formulae, e.g., for deciding whether a

particular square of the board contains a particular player’s piece, the

game is over, the player in turn has won, the player in turn can win in

the next move, or one of the players has more pieces than the other.

– Formalize some interesting assertions about the game as compound for-

mulae such as “if there are no empty squares left, the game is over” or

“all nonempty squares contain a piece of either Player 1 or Player 2.”

• Data Structures and Algorithms : The goal of this subject is to present the

most popular abstract data structures (including files) and their different im-

plementations to the students. In the seminars, students first learn about

three searching and at least five sorting algorithms in detail with C imple-

mentations, and then practice the use of the most important data structures

that have been talked about during the lectures. This is the first subject in

time that has a greater direct influence on our project. From the application’s

point of view, one of the most important data structures is the array or its

two-dimensional version, the matrix. It is because the board of the Reversi

game and the pieces of the players can most conveniently be represented us-

ing an 8×8 matrix. It is interesting to mention how to implement the matrix



“tmcs-panovics” — 2013/9/27 — 9:03 — page 173 — #9

Motivating Students with Long-Term Projects 173

in a language (like C) that does not support multidimensional arrays. Of

course, matrix is not the only data structure used in this project. We will

later need, among others, a record to store the states of the game, which can

be implemented as a class in an object-oriented language, or a nonbinary tree

to represent a part of the game tree, which again can be implemented as a

class. Example assignments for this subject include the following:

– Implement an 8× 8 matrix representing the board in C language. Write

functions that execute simple operations on the board like setting all

squares in a given row between two given columns to a given piece.

– Implement a stack for storing the board states after successive moves for

undoing/redoing the moves.

• Programming Languages 1 : From a programming aspect, this is the most im-

portant subject, which has the most influence on any software development

project. The lectures teach students all the concepts related to high-level

programming languages, while in the laboratories, students should acquire

the use of a specific procedural language. At our university, this language

has been C for ages now because of its significance and because it serves as a

base for other, object-oriented languages like Java. Learning a programming

language via small sample programs is a good method for the beginning, but

they are not enough for learning how to use that language. This is where a

larger-scale application comes in handy. It not only inspires students to spend

some time with programming but also makes them meet situations that oth-

erwise would not come to the front. So in the laboratories, after learning the

language itself (which should not take more than 4 weeks), students can cre-

ate the first version of the Reversi application with the help of the instructor.

Of course, students have to use the data structures learned in the parallel

course Data Structures and Algorithms. After finishing the second semester,

they may be entitled to say that they are able to create simple (but usable)

applications in C. Example assignments for this subject include the following:

– Write a function in C that takes a board and a player as parameters and

returns the number of pieces the given player has on the given board.

– Write a procedure that takes a board and a player as parameters, reads

the given player’s next move from the keyboard in a loop until the user

enters a legal move, and updates the board according to the move. The

code that checks the legality of a move should be placed in a distinct

function.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 174 — #10

174 János Pánovics

After successfully completing a number of such assignments, students will

have their first working version of the Reversi game, which is able to store

the state of the game, draw the board to a character-based console, read the

players’ input from the keyboard, check the legality of the moves, check if

the game is over, and print the result. As an optional assignment, they may

improve the first version of the game with the ability to play against the

computer. The computer may choose its move randomly in this version. The

user should have the possibility to decide whether they want to play with the

computer and if so, select the starting player.

• Programming Languages 2 : The aim of this subject is to get students know

the ins and outs of the object-oriented (OO) paradigm. The lectures also

touch functional programming, but in the laboratories, they only have to

learn one or two object-oriented languages (currently Java and C#). As

newer and newer concepts are introduced in the lectures (classes, inheritance,

polymorphism, interfaces, etc.), students can gradually rewrite the code of our

game application in Java or C#. This way, they can compare the procedural

and OO version of the same program and much better see the benefits of the

OO paradigm. Example assignments for this subject include the following:

– Recode the first version of the game in Java and/or C#.

– Try to rework the result so that it uses more and more OO programming

idioms, classes, inheritance, interfaces, and OO data types (especially

for collections).

• Introduction to Artificial Intelligence: The lectures of this subject are about

state-space representation, various search algorithms, problem reduction rep-

resentation, and look-ahead algorithms for finding the best move in a two-

player game. In the seminars, students first create state-space representations

for various problems. After this, they learn how to implement logical formulae

in Java or C#, then create a class hierarchy for the most popular search algo-

rithms, and finally implement the minimax and negamax algorithms for two-

player games. Although theoretically the subject has no laboratory courses,

students still use computers and write programs during the seminars in the

second part of the semester. Needless to say, this subject is of great impor-

tance concerning our project. By the end of the semester, students are able

to build the minimax algorithm into the application so that human players

can play against the computer. The instructors may even organize a contest

among the students’ programs to further motivate them to write the best



“tmcs-panovics” — 2013/9/27 — 9:03 — page 175 — #11

Motivating Students with Long-Term Projects 175

possible heuristic function. Example assignments for this subject include the

following:

– Create the Java or C# code implementing all the logical operators of

first-order logic.

– Augment the latest version of your program by integrating a minimax

(or negamax) algorithm and eventually, alpha-beta pruning.

• Programming Environments : This is a laboratory-only subject, which fo-

cuses on the usage of integrated development environments, debugging, CASE

tools, the control of compilation, and using libraries. The instructors can

show students how to detect different semantic errors in the Reversi applica-

tion with the help of the debugger of Netbeans or Visual Studio. Students

can also learn how to use a CASE tool, for example, to create the Java code

from a UML class diagram and thus shorten the coding time. As you can see,

there are quite a few possibilities to experiment with our project throughout

this course. Example assignments for this subject include the following:

– Create a statically/dynamically linked library from the AI part of the

Reversi application so that it can be used later with other applications as

well.

• Programming Technologies : The lectures of this subject deal with different

programming methodologies, reuse-oriented development, the role of abstrac-

tion, programming idioms, design patterns, good programming styles, refac-

toring, testing, validation and verification, software metrics, and software

quality assurance. In the laboratories, students learn about UML, advanced

exception handling, using C# delegates, multithreading, reflection, working

with metadata (annotations in Java or attributes in C#), using the Java API

or the .NET framework, creating graphical user interfaces (e.g., using Swing),

JavaBeans, database connectivity from Java and C#, network handling, pro-

cessing XML files, internationalization (i18n), and using regular expressions.

It can be seen from this enumeration that this subject covers a very wide area

of software development. Because of this, instructors can show students a lot

of exciting aspects of programming. Example assignments for this subject

include the following:

– Create a GUI for your application using some visual form designer.

– Make the program multilingual using i18n.

– Extend the application with the capability of loading games from and

saving games to XML files or a database (e.g., with JDBC).



“tmcs-panovics” — 2013/9/27 — 9:03 — page 176 — #12

176 János Pánovics

• Computer Network Architectures and Protocols : The lectures of this subject

cover the theory of networking based on the ISO OSI model and the most

popular protocols of each layer. Laboratories are used, among others, to

create and implement new application layer protocols. Example assignments

for this subject include the following:

– Create a client/server version of your application. This means that the

server side runs on some host, and clients connect to it through TCP/IP

and a new application layer protocol, which controls the game flow. As

a bonus, you may write the server side using multithreading so that each

client connection starts a new thread, which is responsible for the com-

munication with that client.

• Technology of System Development : The lectures are about the process of

software development, process models, functional and nonfunctional require-

ments, system models, requirement analysis, design, standards (UML, MDA),

service-oriented architecture, and agile software development. In the labora-

tories, students create different UML diagrams and ISO documents. They

also learn how to use a version control system and developing in teamwork.

Example assignments for this subject include the following:

– Create different kinds of UML diagrams (e.g., a class diagram, use case

diagrams, or state diagrams) concerning our project.

3.2. Project #2: Creating a Library Information System

This project differs from the Reversi project in that it does not require ar-

tificial intelligence but requires much deeper database knowledge. Of course, we

can again replace the word “library” by any other institution (e.g., a hospital,

a shop, a school, etc.); the point is that we need to keep track of a big amount

of data and be able to execute (possibly complicated) queries via a user-friendly

web-based interface or a thick client program.

Most of the depicted connections between each subject and the Reversi project

apply to this project too. The differences are the following:

• Data Structures and Algorithms : For this project, instructors may show stu-

dents how to create abstract record data structures for storing the books’

data, the patrons’ data, etc., and how to implement them using the struct

type in C. The other thing students may learn is the different abstract file

formats (serial, sequential, direct, indexed, etc.) with which these records

can be stored.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 177 — #13

Motivating Students with Long-Term Projects 177

• Programming Languages 1 : The first version of the application can work with

files instead of databases so we can end up with a C program that can read

and write data from and to text files or binary files. This way, students will

see the big difference between file management and database management

during the Database Systems course.

• Programming Languages 2 : This project probably needs a little more compli-

cated class hierarchy than the Reversi project so students can better practice

inheritance, polymorphism, or interfaces. On the other hand, they can also

realize that file management is somewhat more convenient in Java or C#

than in C.

• Database Systems : The Reversi application did not use databases (unless

we added the capability of loading and saving games). However, database

management is a crucial building stone in the Library project. In the lectures

of this subject, students learn about the basic concepts of database systems

as well as the relational, ER, EER, and ODMG data models, with special

emphasis on the relational model. In the laboratories, students use Oracle

SQL to acquire the usage of SQL DML, DDL, and DCL. This course is

very important for our project. Students have to practice complex SELECT

statements in our Library database to be able to build arbitrary queries into

our application.

• Database Administration: This is a lecture-only subject about the role of the

database administrator, creating a database environment, handling metadata,

storage management, distributed databases, database security, archiving and

recovery, preparing for catastrophes, database performance, and change man-

agement. Although this subject lacks laboratories, the lecturer can show ex-

amples of the above topics concerning our Library database. Examples from

a well-known system always helps better understand the underlying knowl-

edge than examples from different, independent, unknown systems (or even

from one single but unknown system).

3.3. Further Subjects and Projects

Subjects in Table 1 not mentioned so far are less important from a pro-

grammer’s point of view, or at least the knowledge behind them is less used in

real-world applications. There are two more subjects with laboratories during

which students write programs. One is Introduction to Computer Graphics where

they create programs, among others, for drawing simple graphic shapes like lines



“tmcs-panovics” — 2013/9/27 — 9:03 — page 178 — #14

178 János Pánovics

or circles, or for drawing three-dimensional shapes using parallel or central pro-

jection. Students can make use of the knowledge acquired during this subject

in projects like creating a computer game with advanced graphics. If a student

wants to work in this area, then this subject is an essential base for them, which

must be followed by other, advanced subjects dealing with computer graphics like

those in the Computer Graphics block.

The other core subject where students have to write programs is Numeri-

cal Methods. In this subject, they learn about function approximation, numeri-

cal differentiation, numerical quadrature, various methods for solving linear and

nonlinear equations and equation systems, matrix factorization and inversion,

computing determinants, and approximation of the eigenvectors and eigenvalues

of matrices. They also learn to use software like MATLAB or the LINDO API.

Some of the methods mentioned in the lectures are coded in the laboratories,

while others are homework assignments. The knowledge provided by this subject

along with other mathematical subjects like Discrete Mathematics 1/2, Calculus

1/2, or Probability Theory and Statistics can be applied in projects with some

mathematical background. As an example, an application for various kinds of

statistical analyses may be such a project. To further narrow it, someone may

want to write a program that provides different statistical data from the elec-

tronic administration system used by the institution. This example also has to

do with data mining or even data warehouses, which are areas covered in one of

our graduate programs.

There is some sort of programming in the laboratories of Computer Archi-

tectures too. This subject overlaps with Introduction to Informatics because

both deal with data representation, but Computer Architectures is more about

the abstract architecture and operation of a computer. To help students bet-

ter understand how computers work at lower levels, they learn some assembly

programming during the laboratories. Students majoring Engineering Informa-

tion Technology could make more use of this knowledge, although, interestingly

enough, they do not have a laboratory course for this subject. Nevertheless, as-

sembly programming comes in handy in projects requiring low-level programming

such as writing drivers for different hardware components.

Subjects like Automata and Formal Languages, Algorithm Design and Anal-

ysis, and Internet Tools and Services have rather theoretical significance from a

programming aspect. For example, if someone wants to write a compiler or just

a parser for some language, then they can use the knowledge acquired during the



“tmcs-panovics” — 2013/9/27 — 9:03 — page 179 — #15

Motivating Students with Long-Term Projects 179

courses of Automata and Formal Languages. However, automata can also be used

in everyday programming, e.g., when coding an event loop using state machines.

Last but not least, subjects Operating Systems 1/2 are about the architecture

and functions of operating systems. In the laboratories, students learn to use and

a little to administer Windows and Linux, today’s two most popular operating

systems. These are more practical subjects, but they have only little to do with

programming. However, students learn during these subjects how to write scripts

using batch files in Windows or shell scripts in Linux. They can also benefit from

this knowledge when programming in other script languages like JavaScript.

4. Conclusion

I believe that learning all the aforementioned knowledge can be much more

entertaining for the students by developing one or two larger-scale applications

throughout their studies (even if in teamwork) than just writing small sample

programs for every different area of software development. With one complex

project or with two or three medium-sized applications, we can cover nearly every

aspect of the development process and give students a comprehensive example

of software engineering. If our faculty introduced this “learning via projects”

approach of teaching, students would be a little more motivated and would more

likely see the coherence between the topics of the wide range of subjects. On the

other hand, this approach requires some extra work on the instructors’ part: they

need to find appropriate real-world applications that could become the projects,

cooperate with one another on distributing the different parts of the projects

among the various courses, and a lead instructor should be designated as the

person in charge of these tasks, who has an oversight on all subjects in the study

plan.

Of course, we cannot expect a radical improvement in students’ performance

just because of such a minor change in our teaching methodology. Decreasing

the number of students or redesigning the program’s study plan would have a

much bigger effect on it. Although the faculty has little or no influence on the

number of enrolled students, we could still initiate the supervision of the program

requirements of the Software Information Technology BSc major.



“tmcs-panovics” — 2013/9/27 — 9:03 — page 180 — #16

180 J. Pánovics : Motivating Students with Long-Term Projects

Acknowledgments

The publication is supported by the TÁMOP-4.2.2/B-10/1-2010-0024project.

The project is co-financed by the European Union and the European Social Fund.

I would like to thank Magda Várterész for all her useful advice.

References

[1] J. Albornoz Bueno and R. A. Chaparro Aguilar, The learning of fundamental con-
cepts and problem solving strategies in computer science, through the experimenta-
tion and classroom research with discrete games, Proceedings of the 9th International

Conference on Engineering Education, San Juan, Puerto Rico (July 23–28, 2006).

[2] Cooperative training at the Eötvös Loránd University, Faculty of Informatics,
http://www.inf.elte.hu/karunkrol/oktatas/kepzeseink/kooperativkepzes/

Lapok/altalanosleiras.aspx.

[3] Degree requirements for the Software Information Technology BSc major at the
University of Debrecen, http://www.inf.unideb.hu/oktatas/?cat=&

site=hallgato/nappali/oklevel kovetelmeny/pti 2007.

[4] Jeffrey Michael Edgington, Toward using games to teach fundamental computer

science concepts (doctoral dissertation), University of Denver, 2010.

[5] István Fekete, Tibor Gregorics, and Sára Nagy, Bevezetés a mesterséges intelli-

genciába, ELTE Eötvös Kiadó, Budapest, 2006.

[6] S. T. Leutenegger and J. M. Edgington, A games first approach to teaching intro-
ductory programming, Proceedings of the 38th SIGCSE Technical Symposium on

Computer Science Education 39, no. 1, ACM Press (2007), 115–118.

[7] Project Laboratory at the Budapest University of Technology and Economics,
https://www.vik.bme.hu/kepzes/targyak/VIAUA354.

[8] Raymond M. Smullyan, Gödel’s incompleteness theorems, Oxford University Press,
New York, 1992.

[9] D. W. Valentine, Playing around in the CS curriculum: Reversi as a teaching tool,
Journal of Computing Sciences in Colleges 20, no. 5 (2005), 214–222.

JÁNOS PÁNOVICS

FACULTY OF INFORMATICS

UNIVERSITY OF DEBRECEN

H-4028 DEBRECEN, KASSAI ÚT 26.

HUNGARY

E-mail: panovics.janos@inf.unideb.hu

(Received October, 2012)


