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Abstract. This is the second part of a three paper long series exploring the role of math-
ematicians and of the mathematical content occurring in popular media. In particular
we analyze the drama film Good Will Hunting. Here we investigate the mathematical
content of the movie by considering the problems appearing in it. We examine how
a mathematician or a mathematics student would solve these problems. Moreover, we
review how these problems could be integrated into the higher education of Hungary.
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1. Introduction

We continue our series of 3 papers, started by [6]. In this paper we analyze the

mathematics appearing in Good Will Hunting. In Section 2 we explain the central

mathematical problem of the movie. It will be clearly seen, that both the problem

and the solution is well-considered and purposeful. The solution is complex, but

the result can be presented both in a brief or in a complicated way. In Section 3

we consider very briefly what is written on the board when professor Lambeau

addressed the mass of students in the lecture hall. In Section 4 we investigate the
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second problem, consisting of two parts, written on the board, and reveal that

the solution for the second part is not complete in the film. Finally, we finish

in Section 5 by investigating the problem Will Hunting and professor Lambeau

solve together in Lambeau’s office. Throughout the paper we carefully show

what preliminary knowledge a mathematics student needs for understanding the

different ideas. Then, we review what courses at the Hungarian Universities ELTE

(Eötvös Loránd University), DE (University of Debrecen) and SzTE (University

of Szeged) cover these prerequisites, and how the different exercises of the show

can be integrated into these classes. We hope that the reader will entertain himself

reading this note as much as we entertained ourselves figuring out the details of

the different solutions of these problems.

2. Pathfinding in graphs

The following problem occurred first in the movie. It was written on the left

hand side of the board as follows.

Figure 1. The graph G

Problem 1. G is the graph on the vertex set V = { 1, 2, 3, 4 } and with edges

(1, 2), (1, 4), (2, 3), (2, 3), (2, 4) ((2, 3) is a double edge). Find:

(1) The adjacency matrix A.

(2) The matrix giving the number of 3 step walks.

(3) The generating function for walks from i → j.

(4) The generating function for walks from 1 → 3.
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Will Hunting’s solution. Will Hunting wrote his solution on the right

hand side of the board, as follows.

Sol. 1. A =











0 1 0 1

1 0 2 1

0 2 0 0

1 1 0 0











.

Sol. 2. A3 =











2 7 2 3

7 2 12 7

2 12 0 2

3 7 2 2











.

Sol. 3. Γω (pi → pj , z) =

∞
∑

n=0

ωn (i → j) zn =
det (1ij − zAij)

det (1− zA)
.

Sol. 4.

∣

∣

∣

∣

∣

∣

−z 0 −z

1 −2z −z

−z 0 1

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −z 0 −z

−z 1 −2z −z

0 −2z 1 0

−z −z 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

=

=
2z3 + 2z2

4z4 − 2z3 − 7z2 + 1
= 2z2 + 2z3 + 14z4 + 18z5 + 94z6 + . . . .

�

In this section we analyze and explain the mathematical impact and the

solution of this problem from the perspective of a mathematician and a student

with high enough mathematical background.

The proper solution cannot be explained in a few words since it uses a fair

amount of the following university classes.

• Linear algebra: elementary theory of matrices, powers of matrices, Jordan

normal-form.

• Analysis: convergence in normed vector spaces, power series, convergence of

power series.

• Combinatorics: generating function, counting, recurrence formulae.

• Graph theory: adjacency matrix, paths, powers of the adjacency matrix.
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2.1. The solution for a mathematician

Let us consider first the impression of a mathematician. Although considered

to be experienced professors of algebra and discrete mathematics, teaching both

linear algebra and discrete mathematics on almost all university levels, none of

the authors was aware of this issue about the generating functions for the number

of paths before investigating the problem from the movie. They figured out a

possible solution for this problem on their own, using the guidance of Will’s

answers on the board. The solution from their point of view can be interpreted

in the following way.

The problem is about finding the number of walks from a vertex i to a vertex j

in a graph G. From now on we use the graph theoretical notions from [8]. Let G

be a graph with vertex set V = { 1, 2, 3, 4 } and edge set E = {(1, 2), (1, 4), (2, 4),

(2, 3), (2, 3)}, where (2, 3), is a double edge (see Figure 1).

The first exercise is to find the adjacency matrix of this graph, and Sol. 1

is clearly correct. The second exercise was to provide a matrix which gives the

number of 3 step walks. This matrix is A3, and it is presented in Sol. 2.

The third question needs a bit more consideration. We know how to compute

the number of paths of given length, we understand the notion of generating

function of an infinite sequence, but this particular generating function is not one

we usually teach. The board from the movie gives us some hint.

Let ωn (i → j) denote the number of walks of length n from vertex i to ver-

tex j. As An encodes the number of n step walks from a point to another,

ωn (i → j) is the ij entry [An]
j

i of the matrix An. The generating function is an

analytic function defined by its power series fi,j(z) =
∑

∞

n=0 ωn (i → j) · zn, that

is the coefficient of zn is the number of n step walks from i to j.

It does not take much of a leap to consider the matrix power series F (z) =
∑

∞

n=0 An · zn. Or maybe it does. This is the key point to the solution of the

problem. First, we sketch the solution, then make every step precise. Considering

F (z) as a formal sum, we have [F (z)]ji = fi,j(z). To motivate the solution from the

other direction: if we already know that we have to consider a matrix put together

from the fi,j(z) power series, then splitting up the matrix by the powers of z we

obtain that
∑

∞

n=0 An · zn encodes the generating functions. Now,
∑

∞

n=0 An · zn

can be calculated using the usual argument about geometric power series. That

is
∞
∑

n=0

An · zn =

∞
∑

n=0

(A · z)n =
1

1 − Az
= (1 − Az)

−1
= (I − Az)

−1
, (1)
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using that the sum of a geometric series is
∑

xn = 1/(1 − x). The entries of the

inverse matrix are the desired generating functions, each being a rational function

of z.

Now, these arguments should be made precise in order to satisfy the needs

of not only a physicist but a mathematician, as well. One way would be to define

the power series ring R[[z]] over an arbitrary (not necessarily commutative) ring

R (see e.g. [4, 11]). Then one could prove that there exists a natural isomorphism

between the ring R
n×n[[z]] (the ring of power series over the n by n matrices)

and the ring R[[z]]n×n (the ring of n by n matrices of power series). After this,

proving that every step of (1) holds comes down to simply calculating that the

equations

(I − Az) ·

(

∞
∑

n=0

An · zn

)

= I =

(

∞
∑

n=0

An · zn

)

· (I − Az)

hold in the power series ring R
n×n[[z]].

Even though the argument on formal power series is mathematically correct

and can be applied here, proving that the steps of (1) are valid is usually achieved

using analytical methods. That is, one argues that the series in (1) is convergent

someplace and that the sum is really (I − Az)
−1

. Let µ be the eigenvalue of A

having the highest absolute value. From the theory of functional operations and

linear algebra it follows that the series
∑

∞

n=0(A · z)n is convergent if |z| < 1/ |µ|.

Then the standard arguments

∞
∑

n=0

An · zn = lim
k→∞

k
∑

n=0

An · zn = lim
k→∞

k
∑

n=0

(Az)
n

= lim
k→∞

(

I − (Az)k+1
)

· (I − Az)−1 = (I − Az)−1

give us the formula needed.

Finally, the last exercise is to calculate the generating function for ωn (1 → 3).

This is simply calculating the inverse of the matrix (I − Az) by e.g. Cramer’s rule,

and then take the entry in the first row and third column. This entry is a rational

function, the corresponding generating function is the Taylor series of this rational

function.

2.2. The solution for a student in mathematics

At ELTE discrete mathematics is taught on two levels, standard and ad-

vanced. The advanced course covers adjacency matrices and their properties, the
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standard course does not. At DE and at SzTE the class called ‘Combinatorics’

covers adjacency matrices and their properties. Nevertheless, the notion of adja-

cency matrix can easily be explained even for high school students (see e.g. the

third of this series of papers [7]): present the matrix A, where [A]ji is the number

of edges from vertex i to vertex j.

Now, let ωn (i → j) denote the number of n step walks from vertex i to ver-

tex j. Note, that the number of 1 step walks from vertex i to j is the element

[A]ji , that is [A]ji = ω1 (i → j). It can be proved by mathematical induction that

An encodes the number of n step walks from a point to another. Indeed, an

n + 1 step walk from i to j consists of an n step walk from i to k (for some

vertex k) and then a 1 step walk from k to j. To compute the number of n + 1

step walks, we need to add the product of these two numbers for all vertices k.

That is ωn+1 (i → j) =
∑n

k=1 ωn (i → k) ω1 (k → j). By the induction hypoth-
esis ωn (i → k) is the ik entry of the matrix An, and ω1 (k → j) = [A]jk, thus

ωn+1 (i → j) =
∑n

k=1 ωn (i → k) ω1 (k → j) is the ij entry of An+1 by matrix

multiplication. For the particular graph G, the matrix giving the number of 3

step walks is A3, which can be easily verified to be the same matrix as to what

Will wrote on the board. This argument is understandable for any student who

finished an introductory linear algebra course (2nd semester at ELTE and DE,

1st semester at SzTE).

The third exercise was to provide the generating function for walks from i to j.

The concept of the generating function can be explained to students not familiar

with the usual theory of power series and analytic functions. This is the way, for

example in [4], where it is a formal, infinite expression, and is taught at ELTE

in the 2nd semester, at DE in the 1st semester and at SzTE in the 3rd semester.

In this case, however, one would need power series over a noncommutative ring

(namely, over the matrix ring R
n×n), which is not discussed at any undergraduate

course at any of the three universities. Thus we base our theory of generating

functions on analysis. The generating function is an analytic function defined by

its power series
∑

∞

n=0 ωn (i → j) · zn, that is the coefficient of zn is the number

of n step walks from i to j. The theory of generating functions uses only the

theory of power series from analysis, and therefore it can be explained to any

student having that knowledge.

For notions and theorems in calculus we refer to [9], for the generating func-

tion method and its uses in Combinatorics can be found in [1]. We have already

observed via solving the previous exercise that ωn (i → j) is the ij entry of the

matrix An. As the problem asks to find all generating functions at the same
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time, it might suggest to arrange them in a matrix. Then, it does not take much

of a leap to consider the matrix power series
∑

∞

n=0 An · zn. Nevertheless, the

theory of matrix power series is not part of the analysis classes, hence needs some

explanation.

How can one define the convergence of a matrix-series? The closest notion

is the convergence in normed vector spaces, e.g. in R
n. This is covered at ELTE

in Analysis 3, at DE and at SzTE in Multiple variable analysis. If we consider

the n by n matrices simply as an n2 dimensional vector space, then it becomes

a normed space, for example, with the standard Euclidean distance. Being finite

dimensional, any two norms are equivalent over this space. Hence, we are allowed

to use the pointwise convergence saying that a series of matrices is convergent if

and only if each entry involves a convergent series in the usual sense in R. Hence,

for our purposes it is enough to consider this matrix power series as putting

the n2-many usual power series in a table of n rows and n columns. Moreover,

by the above arguments we can proceed with all computations formally using

the usual matrix addition and multiplication. Thus, every generating function

fi,j(z) is convergent (in some neighborhood of 0) if and only if the matrix series
∑

∞

n=0 An ·zn is convergent (in some neighborhood of 0). We investigate the latter

one. By the usual argument about geometric power series, we have

∞
∑

n=0

An · zn = lim
k→∞

k
∑

n=0

An · zn = lim
k→∞

k
∑

n=0

(Az)
n

= lim
k→∞

(

I − (Az)k+1
)

· (I − Az)−1 = (I − Az)−1 . (2)

One still has to make sure that every equation of (2) holds, and every step

makes sense. That is, one needs to determine the set of numbers z for which

limk→∞

(

I − (Az)
k+1
)

= I , and for which the matrix I − Az is invertible. The

latter question can be decided easily: I −Az is invertible if and only if zλ 6= 1 for

any eigenvalue λ of A. Let µ be the eigenvalue of A having the highest absolute

value. Then I − Az is invertible for |z| < 1/ |µ|.
Now, consider the limit limk→∞ (Az)

k
. Let J be the normal form of A, that is

there exists an invertible matrix Q such that J = Q−1AQ consists of only Jordan

blocks. Then A = QJQ−1 and thus (Az)
k

= QJkQ−1zk. If A is an n by n
matrix, then the entries of Jk are bounded by kn |µ|

k
. In fact, as A is symmetric,

J is diagonal and thus the entries of Jk are bounded by |µ|
k
. The elements of

Q and Q−1 are constants. Thus limk→∞ (Az)
k

= limk→∞ QJkQ−1zk = 0 for

|z| < 1/ |µ|, and hence limk→∞

(

I − (Az)
k+1
)

= I in the same neighborhood.
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This technique is taught at ELTE in Algebra 2, at DE in Linear algebra 2, at

SzTE in Linear algebra.

Finally, we need to compute the inverse of I − Az = I − zA. The usual

Gaussian elimination method is of little help here, as z is a variable in the entries

of I − zA, and it is hard to compute with it. But the inverse of a matrix can

be calculated by Cramer’s rule, using the adjugate matrix, which is taught in

any introductory linear algebra course (Algebra 2 at ELTE, Linear algebra 1

at DE, Linear algebra at SzTE). For a matrix M , let Mij denote the matrix

obtained from M by omitting the ith column and jth row. Then the adjugate

matrix of M is the matrix N whose ij entry is (−1)i+j det Mij . By Cramer’s

rule if M is invertible, then M−1 = N/ det M . That is, the ij entry of M−1 is

(−1)
i+j

det Mij/ det M . Applying it to the third exercise in the movie for the

matrix M = I − zA, we obtain that the generating function of walks from i to j

is the fraction (−1)
i+j

det (Iij − zAij) / det (I − zA). This is almost the same as

Will’s solution, except for the (−1)
i+j

factor at the beginning. Sometimes the

notation det (Iij − zAij) covers the (−1)i+j factor by itself, but it may as well

be an oversight from the creators of the movie. Another difference is that Will

denoted the identity matrix by 1 rather than by I .

In the fourth exercise, we are to determine the generating function for walks

from 1 to 3. Having obtained the general formula in the previous step of the

problem, it is not hard to substitute i = 1 and j = 3:

∞
∑

n=0

ωn (1 → 3) zn = (−1)
1+3

det (I13 − zA13) / det (I − zA)

=

∣

∣

∣

∣

∣

∣

−z 0 −z

1 −2z −z

−z 0 1

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −z 0 −z

−z 1 −2z −z

0 −2z 1 0

−z −z 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

=
2z3 + 2z2

4z4 − 2z3 − 7z2 + 1
.

Any student finished an introductory linear algebra course (Algebra 2 at ELTE,

Linear algebra 1 at DE, Linear algebra at SzTE) should not have a problem

to arrive at this formula after some guidance from the teacher. The personal

experience of the second author is that the students do not usually find the formula

on their own, but deduce it with no problems after they know Cramer’s rule should

be applied. Here, −1 is a root of both the nominator and the denominator, hence
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we can reduce the fraction by z + 1:

∞
∑

n=0

ωn (1 → 3) zn =
2z3 + 2z2

4z4 − 2z3 − 7z2 + 1

=
(z + 1) 2z2

(z + 1) (4z3 − 6z2 − z + 1)
=

2z2

4z3 − 6z2 − z + 1
.

To obtain the coefficients of the power series, we need to compute the Taylor series

of this function. Taylor series are covered by Analysis 2 at ELTE, Differentiation

at DE and at SzTE. We apply the well known formula from calculus f (z) =
∑

∞

n=0
f (n)(0)

n! zn, where f (n) (0) is the nth derivative of f at 0 and n! = 1 · 2 · · · · ·n

is the product of positive integers from 1 to n (and 0! = 1 by definition). Here,

f (z) = 2z2/
(

4z3 − 6z2 − z + 1
)

, thus we need to determine its derivatives at 0.

Let h (z) = 2z2, g (z) = 4z3 − 6z2 − z + 1, then f (z) = h (z) /g (z). Will gave the

coefficients of the first six terms, which can be obtained by computing the first six

derivatives of f . As f is a fraction of two polynomials, it can be quite tedious to do

the derivations by hand. Therefore we are going to use an easy trick to reduce the

computational time. As h/g = f , we have h = fg and h(k) = (fg)(k). It is easy to

determine the derivatives by inductively applying the product rule for derivatives.

Now, h′(z) = 4z, h′′(z) = 4, h′′′(z) = 0, g′(z) = 12z2 − 12z− 1, g′′(z) = 24z− 12,

g′′′(z) = 24, g(4)(z) = 0. Then we have h(0) = h′(0) = h′′′(0) = 0, h′′(0) = 4,

g(0) = 1, g′(0) = −1, g′′(0) = −12, g′′′(0) = 24. We obtain a system of linear

equations to solve for the derivatives of f in 0:

h(0) = f(0)g(0) ⇒ f(0) = 0,

h(1)(0) = f (1)(0)g(0) + f(0)g(1)(0) ⇒ f (1)(0) = 0,

h(2)(0) = f (2)(0)g(0) + 2f (1)(0)g(1)(0) + f(0)g(2)(0) ⇒ f (2)(0) = 4,

h(3)(0) = f (3)(0)g(0) + 3f (2)(0)g(1)(0)

+ 3f (1)(0)g(2)(0) + f(0)g(3)(0) ⇒ f (3)(0) = 12,

h(4)(0) = f (4)(0)g(0) + 4f (3)(0)g(1)(0) + 6f (2)(0)g(2)(0)

+ 4f (1)(0)g(3)(0) + f(0)g(4)(0) ⇒ f (4)(0) = 336,

h(5)(0) = f (5)(0)g(0) + 5f (4)(0)g(1)(0) + 10f (3)(0)g(2)(0)

+ 10f (2)(0)g(3)(0) +5f (1)(0)g(4)(0) +f(0)g(5)(0) ⇒ f (5)(0) = 2160,

h(6)(0) = f (6)(0)g(0) +6f (5)(0)g(1)(0) +15f (4)(0)g(2)(0)

+ 21f (3)(0)g(3)(0) + 15f (2)(0)g(4)(0)

+ 6f (1)(0)g(5)(0) + f(0)g(6)(0) ⇒ f (6)(0) = 67680.
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After dividing these numbers by the appropriate factorials we obtain

∞
∑

n=0

ωn (1 → 3) zn = 2z2 + 2z3 + 14z4 + 18z5 + 94z6 + . . . ,

which is, again, what Will wrote on the board.

We finish the section by summarizing the required courses at each university

for the four exercises in Table 1.

Table 1. Required classes for the exercises on the board

ex. ELTE (semester) DE (semester) SzTE (semester)

(1) Discr. math. 1 (1) Combinatorics (1) Combinatorics (3)

(2) Algebra 2 (2) Linear algebra 1 (2) Linear algebra (1)

Discr. math. 2 (2) Combinatorics (1) Combinatorics (3)

(3) Algebra 2 (2) Linear algebra 2 (3) Linear algebra (1)

Analysis 3 (3) Mult. var. analysis (4) Mult. var. analysis (3)

(4) Algebra 2 (2) Linear Algebra 1 (2) Linear algebra (1)

Analysis 2 (2) Differentiation (3) Differentiation (2)

3. Eigenvalues, eigenvectors

When Gerald Lambeau comes into the main lecture hall full of students hop-

ing to reveal the identity of the mystery person solving the first problem, we

see in the background that two problems are written and solved on the main

board. Both of these problems come from linear algebra, they are about deter-

mining eigenvalues and eigenvectors of a particular matrix. These are taught in

the course Algebra 2 (semester 2) at ELTE, in Linear algebra 2 (semester 3) at

DE and in Linear algebra (semester 1) at SzTE.

It is explained on the left hand side of the board how the eigenvalues of the

matrix

A =





1 1 0

1 1 −2

2 1 0





should be computed. This matrix has one real (not rational) and two complex

eigenvalues. One can obtain these eigenvalues by solving a third degree equation.

Since none of these eigenvalues are nice, this particular exercise may be more
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suitable to explain Cardano’s formula on the solution of a third degree equation,

which is taught in the course Algebra 1 (semester 1) at ELTE, in Introduction to

algebra and number theory (semester 2) at DE and in Classical algebra (semes-

ter 2) at SzTE.

The second problem written on the board of the main lecture hall is again an

eigenvalue problem for the matrix

A =





2k −k −k

k 2k −k

k k 2k



 .

In the movie, above this matrix one can see on the board that 0 and 3k are

two eigenvalues, and 3k is an eigenvalue with multiplicity two (called degenerate

eigenvalue on the board). We can read the particular eigenvectors corresponding

to these eigenvalues, as well. However, neither 0 nor 3k are eigenvalues of the

matrix A (except in the case k = 0). Therefore we believe, that the creators of the

movie may have made a mistake here and wanted to put the symmetric matrix

B =





2k −k −k

−k 2k −k

−k −k 2k





on the board instead. One can easily determine that the three eigenvalues of B

are 0, 3k, 3k. The eigenvector corresponding to the eigenvalue 0 is





1

1

1



 ,

and the two-dimensional eigenspace is generated by the vectors





1

−1

0



 ,





1

0

−1



 .

4. Trees

The second problem on the hallway board was written specifically to challenge

the person who solved the first problem. It consists of two exercises:
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Problem 2. (1) How many trees are there with n labeled vertices?

(2) Draw all the homeomorphically irreducible trees with n = 10.

Will gives the answer nn−2 to the first question and draws eight graphs to

answer the second question.

The result of the first question is known as Cayley’s formula [3] but has been

discovered first in 1860 by Borchardt [2]. There are several different ways to prove

it, maybe one of the most well-known proofs is the one due to Prüfer [10], assigning

a so-called Prüfer code to every tree. Cayley’s theorem with this proof is taught

in Discrete mathematics 1 (semester 1) at ELTE, in Combinatorics (semester 1)

at DE and in Combinatorics (semester 3) at SzTE.

Now, we move on to the second problem about homeomorphically irreducible

trees. A tree is homeomorphically irreducible (or sometimes called series-reduced)

if it has no vertex of degree two. The first results about homeomorphically ir-

reducible trees are due to Harary and Prins [5]. For example they list all such

trees having at most 12 vertices, and in particular list those having exactly 10

vertices. Even though homeomorphically irreducible trees are not part of any

undergraduate course at any of the three universities, by using elementary graph

theoretical results, one can find all homeomorphically irreducible trees having 10

vertices. It is interesting that the creators’ of the movie made a mistake: Will

draws 8 trees on the board, while there exist 10 homeomorphically irreducible

trees with 10 vertices.

Let us label the vertices by 1, . . . , 10, their degrees by d1, . . . , d10. Assume

that the degrees are in decreasing order. Now, the sum of the degrees is 18 as the

tree has 9 edges. If there are l leaves and 10 − l non-leaves, then the sum of the

degrees (18) is at least l + 3 · (10 − l) = 30 − 2l, thus l ≥ 6. If there are 9 leaves

and 1 non-leaf, then we obtain the star: 1 is connected to every other vertex. If

there are 8 leaves then d1 +d2 = 10, and d1 ≥ d2 ≥ 3. Thus d1 = 7 and d2 = 3, or

d1 = 6 and d2 = 4, or d1 = d2 = 5. All three of them gives one homeomorphically

irreducible tree, where 1 and 2 are connected and the leaves are connected to

them according to their degrees. If there are 7 leaves, then d1 + d2 + d3 = 11,

and d1 ≥ d2 ≥ d3 ≥ 3. Thus either d1 = d2 = 4 and d3 = 3, or d1 = 5 and

d2 = d3 = 3. The first case produces two trees: one where the two degree 4

nodes are connected and one where they are not connected. The second case

produces two trees, as well: one where the two degree 3 nodes are not connected

and one where they are connected. The latter tree is missing from the board in

the movie, which must be the creators’ mistake. Finally, if there are 6 leaves,
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then d1 +d2 +d3 +d4 = 12, d1 ≥ d2 ≥ d3 ≥ d4 ≥ 3, hence d1 = d2 = d3 = d4 = 3.

This produces two more trees: one where there exists a degree 3 node with no

leaves attached to it, and one where no such node exists. This latter graph is,

again, missing from the board, which is another mistake in the movie. Altogether

there are 10 (rather than 8) homeomorphically irreducible trees with 10 nodes

(see Figures 2 and 3). If the reader is further interested in homeomorphically

irreducible trees, they can consult e.g. [1].

Figure 2. The 8 homeomorphically irreducible trees on the board

Figure 3. The 2 missing homeomorphically irreducible trees from the board

5. Chromatic polynomial

The problem we see being solved by Gerald Lambeau and Will Hunting to-

gether is to determine the chromatic polynomial of the 3-Sun graph, i.e. of the

graph having vertices a, b, c, d, e, f and edges ab, ac, ad, ae, bc, bd, bf , ce, cf .

This is a planar graph which looks like a triangle with connecting the midpoints

of the sides (Figure 4).

The chromatic polynomial of a graph G is a function pG (k), which gives the

number of well-colorings of G by k different colors. A coloring of the vertices is

called a well-coloring if adjacent vertices are colored by a different color. It is
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Figure 4. The 3-Sun graph

a computationally hard problem to determine the smallest number of colors for

which there exists a well-coloring of a graph with that many colors. Obviously

the chromatic number is the smallest positive integer which is not the root of the

chromatic polynomial. Thus it is computationally hard to determine the chro-

matic polynomial for a graph in general, as well. For particular graphs it can be

easy to determine this polynomial, e.g. the chromatic polynomial of the complete

graph having n vertices is k (k − 1) . . . (k − n + 1) or the chromatic polynomial

for the empty graph is simply kn.

The chromatic number is taught at every introductory discrete mathematics

or combinatorics course. That is, it is covered in discrete mathematics 1 (se-

mester 1) at ELTE, in Combinatorics (semester 1) at DE and in Combinatorics

(semester 3) at SzTE. Although the chromatic polynomial can be introduced in

an elementary way, it is only part of the course taught at DE. In the following we

introduce how one could build up a lecture on this exercise.

It is already interesting that this particular function pG (k) is indeed a poly-

nomial. Its degree is at most n if G has n vertices. It can be shown as follows. A

well-coloring creates a partition of the vertices of the graph by the color classes,

and each color class is an independent set in the graph. As G is finite, there

are finitely many ways to partition it as the union of independent sets. Thus

the number of colorings can be computed by calculating the number of colorings

giving a particular partitioning and then summing these numbers for all possible

partitions. Let P be a partitioning with d independent sets. Then the first inde-

pendent set can be colored by k colors, the next set by (k − 1) colors, etc. The

last independent set can be colored by (k − d + 1) colors, and thus the number of

colorings by k colors determining the partition P is k (k − 1) . . . (k − d + 1). This

is a degree d polynomial in k, where d ≤ n.

Now, we determine the chromatic polynomial of the Sun graph G in the movie.

Recall that the graph G consists of vertices a, b, c, d, e, f and edges ab, ac, ad,
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ae, bc, bd, bf , ce, cf (see Figure 4). Let us count the number of well-colorings

by k colors. We can color the vertex a by k colors, which leaves (k − 1) colors to

choose from to color the vertex b. Then, we will have (k − 2) colors to choose from

to color the vertex c. Finally, the remaining three vertices (d, e and f) can all be

colored independently by (k − 2) colors, as they have only two neighbors which are

colored already by two different colors. Thus pG (k) = k (k − 1) (k − 2)
4
, as Will

Hunting and Gerald Lambeau deduced together. Nevertheless, they obtained this

result in a different way. They may have obtained this result from the following

lemma.

Lemma 1. If G and H are two graphs intersecting in a complete graph then

pG∪H (k) =
pG (k) pH (k)

pG∩H (k)
.

Proof. Let us color first G ∩ H . Now, G ∩ H is a complete graph, thus

all its vertices must be of different color. Fix a well-coloring of G ∩ H , and let

qG (k) be the number of well-colorings of G extending this particular coloring of

G ∩ H . Observe, that for another well-coloring of G ∩ H , it can be extended

in qG (k)-many ways into a well-coloring of G, as well. Thus we have pG (k) =

pG∩H (k) · qG (k). Similarly, let qH (k) be the number of well-colorings of H

extending a fixed coloring of G ∩ H . Then pH (k) = pG∩H (k) · qH (k). Now,

pG∪H (k) can be calculated by counting how many ways can a well-coloring of

G∩H be extended into a well-coloring of G∪H . As G\ (G ∩ H) and H \ (G ∩ H)

are independent, we have

pG∪H (k) = pG∩H (k) · qG (k) · qH (k)

=
pG∩H (k) · qG (k) · pG∩H (k) · qH (k)

pG∩H (k)
=

pG (k) · pH (k)

pG∩H (k)
.

�

By induction on the number of graphs, one can immediately prove

Corollary 2. If G1, G2, . . . , Gd are graphs such that any two intersects

in the very same complete graph, then

pG1∪G2∪···∪Gd
(k) =

pG1 (k) pG2 (k) . . . pGd
(k)

pG1∩G2∩···∩Gd
(k)d−1

.
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Now choose G1 to be the subgraph spanned by the vertices a, b, c, d, G2 to

be the subgraph spanned by the vertices a, b, c, e, and G3 to be the subgraph

spanned by the vertices a, b, c, f . Consider the graph G1. Here, the vertex a

can be colored by k colors, the vertex b can be colored by k − 1 colors, and c and

d can be colored independently by any of the remaining k − 2 colors. The same

reasoning works for the graphs G2 and G3. Thus pGi
(k) = k (k − 1) (k − 2)

2
. The

chromatic polynomial of the complete graphs of three vertices is k (k − 1) (k − 2),

and thus by Corollary 2 we have

pG (k) = pG1∪G2∪G3 (k) =
pG1 (k) pG2 (k) pG3 (k)

pG1∩G2∩G3 (k)
2 =

k3 (k − 1)
3
(k − 2)

6

k2 (k − 1)
2
(k − 2)

2 .

This formula is now exactly the same as in the movie. For further reading on

chromatic polynomials we suggest the reader to take a look at [8, ex. 9.36–9.49].
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