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Learning and teaching combinatorics

with Sage

István Vajda

Abstract. Learning Mathematics is not an easy task, since this subject works with espe-
cially abstract concepts and sophisticated deductions. Many students lose their interest
in the subject due to lack of success. Computer algebra systems (CAS) provide new
ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate
concepts, deductions and algorithms and to make learning process more interesting es-
pecially in higher education. It is an even more efficient way to improve the learning
process, if students can use the system themselves, which helps them to practice the
curriculum.

Sage is a free, open-source math software system that supports research and teach-
ing algebra, analysis, geometry, number theory, cryptography, numerical computation,
and related areas. I have been using it for several years to aid the instruction of Discrete
Mathematics at Óbuda University. In this article I show some examples how represen-
tations provided by this system can help in teaching combinatorics.
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1. Introduction

Learning mathematics is not an easy task for most of the students, since

this subject works with especially abstract concepts and sophisticated deduction.

According to Skemp the particular problem (but also the power) of mathematics

lies in its great abstractness and generality, which are achieved by particularly

intelligent individuals of successive generations each of whom has been abstracting

from, or generalizing, concepts of earlier generations [9].
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Some experts of mathematics education distinguish five strands of proficiency,

which students have to develop during their learning process [3]:

• conceptual understanding – comprehension of mathematical concepts, oper-

ations, and relations,

• procedural fluency – skill in carrying out procedures flexibly, accurately, effi-

ciently, and appropriately,

• strategic competence – ability to formulate, represent, and solve mathemati-

cal problems,

• adaptive reasoning – capacity for logical thought, reflection, explanation, and

justification,

• productive disposition – habitual inclination to see mathematics as sensible,

useful, and worthwhile, coupled with a belief in diligence and one’s own effi-

cacy.

While many students in higher education lack a notable part of the above

skills, computer algebra systems (CAS) brought new opportunities into math in-

struction, altering learning and teaching methods. Though there is a risk that

using CAS can generate the solutions of the exercises without students’ under-

standing of the related concepts and algorithms [8], properly used they can fa-

cilitate some of the above skills as the conceptual understanding and productive

disposition of students while altering the idea of others as procedural fluency [4].

The following features often considered as the most important advantages of

using CAS in math education:

• It is a tool that enables us to present more representations of the examined

objects.

• Graphical components can visualize complicated concepts.

• The long and tedious numeric calculation can be processed by the computer,

so students can concentrate on the concepts and associations.

• It allows us to present more realistic examples.

Authors usually show several examples how to use the graphical components

since they are very helpful in some topics of mathematics like calculus or graph

theory [1] [4]. In this article I render the role of representations provided by CAS

in teaching combinatorics. Examples presented in sections 3-4 were tested in my

computer aided experimental courses at Óbuda University.
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2. About the experimental courses

Most of the articles discuss how to use CAS in teaching calculus or elementary

algebra i.e. [6][2][7], while other topics are yet to explore in this regard. Discrete

Mathematics is one of them, since it consists of many different topics that require

dissimilar teaching methods and often cannot be illustrated visually. Since other

researchers suggest that using CAS improves the achievement of students’ skills

and understanding in other topics, I offered courses of the subject in computer

laboratory since 2009 September at Óbuda University. This experiment affects

two study groups per semester. The aim of the course is to develop students’

problem solving skills and mathematical understanding, furthermore provide a

useful tool to help their studies.

Though Sage is one of the most recent computer-algebra system it is widely

used in teaching mathematics [10]. It includes many other systems, covers many

topics of mathematics and is developing rapidly. Since it is a free and open source

software product students can use it not only in classes but to prepare their home-

work too, which is an important advantage over other popular computer algebra

systems. Since attendees of my courses are computer science and engineering

students, they have usually no difficulties with the usage of the system.

Most of the time students work independently in classes but it is often nec-

essary to review some concepts of mathematics and appropriate functions of the

system at the beginning. Naturally they can ask questions if some difficulties

would arise or allowed to use the help system and their notes. Their homework

consists of six problems similar to the ones solved in class. They have to present

their solutions in a week and their accomplishments affect their marks at the end

of the semester. However the most important parts of the assessment of students’

work are the two tests they have to write on the computer.

3. Representations of permutations

Permutations are one of the combinatorial concepts that can be represented

diversely. Students usually get to know the static concept of permutation at

secondary school:

Definition 1. Permutation is an arrangement of a set of objects into a

particular order.
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This interpretation harmonizes with the following representation of the Sage

program: (Figure 1) However the solution of several math problems requires

another definition of permutations.

Figure 1. List of permutations

Example 1. In how many different ways can five letters be mixed up so that

not any of the letters gets to the appropriate recipient?

In order to solve Example 1 [11], students have to understand the concept of

fixed points, which needs the precognition of the Definition 2.

Definition 2. Permutation of a finite set S is a bijection from S to itself.

Since this definition is more abstract than Definition 1, students have more

difficulties to understand it. In order to help the learning process, we have to

show suitable representations of permutations, some of which we can generate via

Sage. You can see an example in Figure 2, which displays the connection between

the two meanings of permutation.

Figure 2. Matrix of a permutation

Figure 3 represents the same, but it emphasizes better that permutations are

in fact functions.
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Figure 3. Permutation as a function

Definition 3. Let f : S → S be a permutation of a set S. An element s ∈ S

is a fixed point of f if f(s) = s. That is, the fixed points of a permutation are

the points not moved by the permutation.

Definition 4. The f : S → S permutation is fixed point free, if ∀x ∈

S : f(x) 6= x.

Thus we can rephrase Example 1 using Definitions 3-4:

Example 1.* How many S → S fixed point free permutations exist, if |S| = 5?

The usual solution applies the inclusion-exclusion principle [11]. Let N de-

note the number of permutations of five elements and Nα1...αr
the number of

permutations in which α1, . . . , αr fixed points. (They can have other fixed points

too.) The number of fixed point free permutations can be calculated as follows:

N (0) = N − N1 − N2 − . . . − N5 + N12 + . . . + N45−

− N123 − . . . − N345 + N1234 + . . . + N2345 − N12345 =

= 5! −

(

5

1

)

4! +

(

5

2

)

3! −

(

5

3

)

2! +

(

5

4

)

1! −

(

5

5

)

0! = 44

This solution is usually hard to understand for the students, because of the

usage of so many subsets of permutations. It becomes easier if they study these

subsets that can be generated by Sage. In Figure 4 we can see all of those

permutations of {1, 2, 3, 4, 5} in which 2 and 4 are fixed points, but four of them

have others too. Apparently N24 = 6.
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Figure 4. Special permutations

Another solution arises from the cycle notation of permutations, which ex-

presses the permutation as a product of disjoint cycles. For example [3, 1, 4, 2, 5]

consists of two cycles (1, 3, 4, 2) and (5), which means that 1 7→ 3, 3 7→ 4, 4 7→ 2,

2 7→ 1 and 5 7→ 5. (Figure 5) Fixed points compose cycles with one element, so

the solution of Example 1 is the number of permutations without a cycle of one

element. So the adequate permutations consist of one cycle of five elements, or

two cycles with two and three elements respectively. So the number of the fixed

point free permutations is:

4! +

(

5

3

)

· 2 = 44

Figure 5. Cycle notation

The solution of Example 1 can be easily produced by Sage since the

derangements() function generates the fixed point free permutations of a set,

while the number of derangements() function returns the number of them.

Example 2. Let S be given a set of 10 elements. Determine the number of

those permutations of S which have exactly 4 fixed points!

Solution: There are
(

10
4

)

ways to choose the four fixed points. Among the

other six elements there cannot be further fixed points. Six elements have 265

fixed point free permutations, so the number of the permutations in question is
(

10
4

)

· 265 = 55 650. (Figure 6)

While students are usually familiar with Pascal’s triangle and the
(

n

k

)

=
n!

k!(n−k)! equality, so they can calculate the binomial coefficients, it would be

difficult to produce the number of derangements for them without a sufficient

computer algebra system. Some of them even prefer the logically simpler way
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Figure 6. Number of derangements

of counting the appropriate permutations. (Figure 7) Either way the computer

enables us to solve math problems that could not be solved conventionally.

Figure 7. Counting of 4-fixed-points-permutations

4. Arrangements of Multisets

Example 3. Peter wants to send postcards to 10 friends. In the shop there

are only 3 kinds of postcards, 4, 5 and 6 from each respectively. In how many

ways can he send the postcards, if he wants to send one card to each friend?

This example is similar to others that can be found in several books [11] [5],

but usually we do not know how many postcards are available, only that there

is a large number of each kind. If that would be the case, we had three ways

to choose a postcard for each person, so the solution would be 310 = 59 049.

Contrarily Example 3 cannot be solved in some familiar way due to the included

conditions, however we can easily generate the answer via Sage. (Figure 8)

Though Example 3 is not suitable to improve the problem solving skill of

students in a conventional way, since the Sage system makes the hard work, it

can improve the learning process of students nonetheless. Firstly such problems

provide an appropriate way to introduce new concepts, in this case the concept of

multiset. Secondly if students try to find a solution without the computer, they



“tmcs-vajda” — 2012/12/3 — 11:56 — page 396 — #8

396 István Vajda

Figure 8. Number of arrangements

can achieve a deeper understanding of combinatorial calculations, going over why

they do not work in this example.

5. Students’ achievement and opinion

Students of Discrete Mathematics courses at Óbuda University have to un-

dergo two tests per semester, participants of the experimental groups work on

computer while the others sit the conventional written examination. Usually

there are only one or two questions related to combinatorics in a semester be-

cause of the several topics to check. The students’ achievements of the last three

years are summarised in Table 1.

Table 1. Students’ accomplishment in combinatorics questions

Experimental groups Control groups

Number of questions 8 6

Number of students 41 52

Number of solutions 294 269

Students’ achievement (%) 62 34

To learn the students’ opinion about the experiment, I asked them to fill

a questionnaire at the end of the course. Most of them considered the course

successful, only 3 students of the 92 preferred the conventional way of teaching.

About half of them think that combinatorics is one of the most difficult topics of

Discrete Mathematics despite of the relatively good result they achieved.
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6. Conclusion

Discrete Mathematics has many topics, which require different thinking and

teaching methods. The Sage system has many facilities which can help to under-

stand several concepts and methods of the subject, but not all of them. Graphical

components can visualize graphs and related concepts as posets or groups, but

its function is not so overall, than in teaching calculus.

However Sage can represent concepts in many other ways as the above exam-

ples demonstrate at the topic of combinatorics, which helps to understand them

more thoroughly. Another advantage of the system is, that it can manage cal-

culations, which would be too complicated and tedious otherwise, expanding the

range of solvable problems. This often allows us to introduce new concepts in a

serried way and enables us to work with more realistic examples.

The development of the aforementioned five strands of proficiency can be

aided more efficiently by reasoned usage of CAS. Students’ grades imply a deeper

understanding and strategic competence, though the meaning of the latter is

slightly modified. Procedural fluency changes even more.

The bigger alteration is the classwork of students, which improved dramat-

ically in the computer laboratory. While they require the help of the teacher

yet, their work is more self-supporting getting more information from the com-

puter and each other. The betterment of their productive disposition is the most

noticeable change induced by the usage of the system.
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