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Nice tiling, nice geometry!?!

Emil Molnár

To memory of my father Ernő Molnár, an enthusiastic teacher of mathematics,

on the 100th anniversary of his birth

Abstract. The squared papers in our booklets, or the squared (maybe black and white) pave-
ments in the streets arise an amusing problem: How to deform the side segments of the square
pattern, so that the side lines further remain equal (congruent) to each other? More precisely,
we require that each congruent transformation of the new pattern, mapping any deformed side
segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).

It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal)
quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles
(see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative
pavements in streets, in flats, etc.

I shall sketch the solution of the problem that leads to fine (and important) mathematical

concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency
matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable
way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as
visually attractive figures in a primary school as well.

My colleague, István Prok [11] developed an attractive computer program on the Euclidean
plane crystallographic groups with a nice interactive play (for free download), see our Figures
3–5.

A complete classification of such Euclidean plane tilings (not only with quadrangles) can
be interesting for university students as well, hopefully also for the Reader (Audience). This is
why I shall give some references, where you find also other ones.

Further problems indicate the efficiency of this theory now. All these demonstrate the usual

procedure of mathematics and the (teaching) methodology as well: We start with a concrete

problem, then extend it further, step-by-step by creating new manipulations, concepts and

methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.

This paper is an extended version of the presentation and the conference paper [7].

The author thanks the Organizers, especially their head Professor Margita Pavleković for the

invitation, support and for the kind atmosphere of the conference.

Copyright c© 2012 by University of Debrecen
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1. Introduction

After a longer experimental period, when dealing with a collection of squared

papers, the school pupils (students) will get good and erroneous constructions

in individual and collective work as well. They can conclude (probably in the

second or third occasion, step-by-step, under direction of the teacher, as little

as possible) to the following really fine idea (being described now in a compact

form [4]):

Our Figure 1 shows the usual square tiling with its 2-dimensional face centers

indicated by small triangles ∆, with (1-dimensional) edge centers denoted by ♦,

and (0-dimensional) vertices ◦. The opposite full , dashed −−− and dotted

· · · · · · lines, respectively, are introduced as well, so that we obtain the so-called

barycentric subdivision of the square tiling into barycentric triangle tiling denoted

by C. That is important in the description of our simple square tiling (moreover

of any polygonal tiling, furthermore of any ‘topological’ one; with corresponding

changes, of course [2]).

4 barycentric triangles (1, 2, 3, 4 in Figure 1 top left) support to any edge

from both sides. They form the so-called edge domain V PWQ, playing an

important role in description of the possible edge modifications. Namely, an edge

can be drawn almost freely between the vertices V and W in the edge domain

V PWQ. Then a plane group (as a rule of periodicity) with the starting edge

domain as fundamental domain (repetitive unit) will tile the whole square tiling,

with the modified edge in it (see also Figure 2: 2.3, 2.4, 2.5, 3.2, 3.3, 3.4).

But the modified edge can also be symmetric with respect to its midpoint

(right bottom of Figure 1, and in Figure 2: 1.3, 1.5). Or it is symmetric w.r.t.

the side edge itself (left bottom of Figure 1, and Figure 2: 1.2, 1.4). Here the

edge cannot change, but extra label (mark), in the half edge domain, shows the

situation. Or it is symmetric w.r.t. the midline of the side (Figure 1 top right, and

Figure 2: 2.1, 3.1). Or it is symmetric in both of the last mirror lines (Figure 1

top middle, and Figure 2: 1.1), this is just the original square tiling.

The remaining task to solve is how to display these edge domains in

a regular way (as formulated in the Abstract), so that they form a ‘topological



“tmcs-molnar” — 2012/11/24 — 17:56 — page 271 — #3

Nice tiling, nice geometry!?! 271

quadrangle tiling’ in the plane, and to any two new edges there exists an isometry

of the plane that maps the first edge onto the second one and the whole plane

tiling will be mapped onto itself.

For this last step we would need the classification of the 17 plane crys-

tallographic groups, as the program [11] shows, or at least to overview those

possibilities, how the edge domain can be a fundamental domain (repet-

itive unit) for a tiling with the edge domains above? This task needs

only finitely many side pairings of this quadrangle edge domain and

its parts above (Figure 1–2).

Figure 1. The square tiling and its barycentric subdivision. Edge
domain V QWP of 4 barycentric triangles. Symmetries of the edge
domain yield smaller fundamental domains.

That means, this problem provides also a theoretic benefit by offering

insight into some plane crystallographic groups (7 out from 17). This could

be an attractive experiment for an ambitious teacher in the special mathematical

circle of a secondary school, or also of a primary one.

I collected in Figure 2 the complete list of the solutions: the 14 types of our

“edge-transitive” (isotoxal) quadrangle tilings as illustration from [4], where the
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more general scientific problem on spatial cube tilings has also been solved. The

Reader finds also a plane generalization in [2].

Figure 2. The 14 families of quadrangle tilings with equal edges:
1. Equal tiles with edge symmetry; 2. Equal tiles with vertex symme-
try; 3. Non-equal (black and white) tiles with D-diagrams.
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2. The solution

Our Figure 2 shows the 14 types of edge-transitive square tilings by at most

two typical tiles with the edge domains of numbered barycentric triangles. We

have divided the list into 3 classes.

Class 1 contains five members 1.1–1.5 where the symmetry group of the edge

(i.e. the stabilizer group of the edge center) maps the two adjacent tiles to each

other.

Class 2 also consists of five tilings 2.1–2.5 where we have also equal tiles not

by the edge stabilizer but by the vertex one.

Class 3 has four surprising tilings 3.1–3.4 with two types (e.g. with black and

white colors) of tiles not mapped to each other, despite all the edges are mapped

onto each other.

Figure 3. I. Prok’s program [11] provides a drawing mode with various
colors. It makes black and white pictures as well.
http://www.math.bme.hu/∼prok
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At each tiling in Figure 3 we have indicated by an initial capital letter,

whether a convex (C), or a non-convex (N) realization (sometimes both ones,

think of!) is (are) possible. M indicates that marks are necessary for “symmetry

breaking”. Moreover, you find the crystallographic plane group to each tiling in

international denotation (7 groups out of 17).

3. On D-symbols. Illustration with computer pictures

You find also the very important adjacency diagram (adjacency graph) to

the so-called D-symbol D (D, ΣI , M). (for initiative of B. N. Delone (Delau-

nay), M. S. Delaney, A. W. M. Dress) at class 3. Find the other ones to the classes

1–2, please! Note that each diagram (graph) D remains connected if we exclude

the dashed −−− lines from the diagram. This assertion will be the criterion of

edge-transitivity of a plane tiling!

It is a very nice idea, isn’t it!?!

This would be the next level of abstraction, mainly for university

students or to audience of a scientific conference. Of course, this is only

to indicate an important method for research at a scientific level for other tilings

in the plane; or - much more important and with new scientific results (e.g. in

[1], [2], [4], [5], [6]) – in a homogeneous space (e.g. one of constant curvature),

where many problems are still open .

For each D-diagram D in Figure 2: 3.1–3.4 we consider the barycentric tri-

angle subdivision C (Figure 1) of the square tiling. Any such triangle of the edge

domain (1, 2, 3, 4 or 1, 2 or 1, respectively) will be indicated by a vertex of

the diagram D. The dotted · · · · · · lines, now seen as σ0 operation of C and of

D, the dashed − − − lines as σ1 operation of C and of D, the full lines as

σ2 operation of C and of D indicate the adjacencies of the diagram D (with the

above labeled or colored edges of graph D) according to the common sides of the

barycentric triangles in C.

Please observe that the images of the edge domains or smaller fundamental

domains in Figure 1–2 will also be induced by these adjacency operations.

That means that the whole symmetry group Γ of the tiling will be

described if we give the (symmetric) so called adjacency matrix function M =

(mij) of diagram D. The entry mij shows, how many barycentric triangles of side

i and j (the half of them) surround a k-vertex of C, {i, j, k} = {0, 1, 2}, according

to the corresponding ij-path in D. That means that each element (vertex) of
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diagram D describes the corresponding triangle class (orbit) of C by the symmetry

group Γ, so that Γ preserves the adjacencies of C.

Now the adjacency matrix function M is constant:
(

1 4 2
4 1 4
2 4 1

)

, i.e. the same for

each element of D and of C, because of the square tiling or quadrangle tiling,

where 4 quadrangles meet at each vertex.

Consider e.g. Figure 2: 3.3 with its picture and its diagram, where the adja-

cency operations can be given by involutive (involutory) permutations (in general)

as follows

σ0 : (12)(34); σ1 : (1)(2)(34) as the loops show it at vertex 1 and 2; σ2 : (14)(23).

Now (σ1, σ0) at the tile centers (2-centers) of triangles 1, 2 in C shows the dihedral

corner for Γ; (σ1, σ0) at tile centers of triangles 3, 4 shows the 4-rotation in Γ

by matrix entries m01 = m10 = 4 (please check them carefully!). The (σ2, σ1)

composition (always in opposite order by our convention now) provides the line

reflection at the common triangle vertices (0-centers) of the triangles 1, 2, 3, 4

in C, again by matrix entries m12 = m21 = 4 (check it, please!). The (σ2, σ0)

composition provides the trivial stabilizer (the identity) in Γ at the edge centers

(1-centers, 1-vertices) of triangles 1, 2, 3, 4 by matrix entries m02 = m20 = 2.

Thus the edge domain provides a fundamental domain for the plane group p4g,

indeed. This procedure can have an axiomatic or algorithmic formulation and it

can be computerized as well (e.g. as in our paper [1]). See also the Appendix at

the end of this paper.

Another edge-transitive tiling to Γ = p4g = p4gm is pictured by computer

program [11] in Figure 3 (also by Figure 2:2.1), where we have drawn an edge motif

into a fundamental domain of the colored picture which can be very attractive

and amusing.

The method is general, we can draw all the 14 types by this strategy, and also

other Euclidean or non-Euclidean isotoxal tilings (see [2]).

Finally, you see two black and white computer illustrations by the author

(Figure 4–5). The first picture is drawn with the former pattern by the group

Γ = p4g (Figure 4). The second one is by the group no. 8 p2gg = pgg (please,

find it also in Figure 2).

Please, continue drawing!!!

I thank my colleague Dr. Jenő Szirmai for his help in preparing the manu-

script, I also thank the unknown referees for their valuable suggestions.
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Figure 4. Black and white pattern by the former plane group p4gm
no. 12.

Figure 5. Pattern by plane group p2gg no. 8.
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4. Appendix for interested readers. Axioms for D-symbols, some

problems

After the previous visual description, we formulate a system of axioms for

the D-symbol structure D(D, ΣI , M). (For details see [1], [4], [5], [6], [8], moreover

[9], [10], [12] for other aspects and applications).

Here D = {D1, D2, . . .Dn} is a set of finite, say of n elements (n ∈ N =

{1, 2, . . .} the natural numbers) with |I | = d+1 involutive (involutory) adjacency

operations ΣI = {σ0, σ1, . . . , σd} on D (each acts as permutation, say from the

left on D).

- Think of the plane, i.e. d = 2, and of a fundamental polygon (domain) F -

as before – glued together of n barycentric triangles (or simplices in dimensions

d). This logical gluing is just by the adjacency operations σi, each along the i-sides

(side-facets), i ∈ I = {0, 1, . . . , d}, while the gluing is possible, according to the

axioms below.

The free (not glued yet) j-sides (side-facets) generate a group Γ. Now each

generator will be a mapping jg (occasionally with further numbering subindex

on the left of g) which maps this free j-side onto the corresponding free j-side,

and jg maps the triangle (simplex) of F along the above j-side onto the image

triangle along the image j-side of the image fundamental domain F.jg, j-adjacent

with F . An analogous argumentation defines the inverse generator jg−1, so the

side pairing of F . Involutive (involutory) generator can also occur, e.g. reflection

in a side (-facet) of F , etc.

In this sense, while the adjacency operations of ΣI acts from the left on D

and on F , the transformation group Γ acts from the right on F and on its Γ

images. The parentheses in the formula

(σiD).jg = σi(D.jg)

express this formal associativity law, and we can say: The fundamental group Γ

of the tiling, with the Γ images of domain F , preserves the adjacency relations

of the barycentric simplices (previously denoted by C), of the fundamental tiling

denoted by FΓ.

Now the N valued symmetric matrix function M : D → NI×I , D → mij(D)

will determine the branching numbers at (0 = (d−2)-dimensional) vertices (edges

for d = 3) at the intersection of ij-sides of the barycentric triangles (simplices),

so at the fundamental domain F in FΓ. These will serve the so-called defining

relations for the above generators jg of Γ (see the crucial Axiom iii) below).
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The axioms will be expressed by the above matrix function M as follows:

i) mjj(D) = 1

ii) mij(σiD) = mij(D) = mji(D)

iii) (σjσi) . . . mij(D) times . . . (σjσi) D = D

iv) mjk(D) = 2 if |j − k| > 1

v) if |j − k| = 1, then mjk (D > 2 (or ≥ 2 for generalization, e.g. for digons on

the ordinary sphere S2).

All these hold for any D ∈ D and for indices i, j, k ∈ I.

Such a concise formulation can give us a good esthetical feeling, that math-

ematics and geometry are nice! Although this level of abstraction, now far from

being visual, might be strange enough? But think of that our starting problem and

its generalization on the sphere, on the Bolyai–Lobachevskian hyperbolic plane,

each of them satisfies these axioms. We can say: the structure D(D, ΣI , M) has

a lot of models ! By these signs !?! we have also referred to the title of this paper,

again.

We recall e.g. from [1] or [8] the so-called curvature formula for d = 2-

dimensional D-symbols

> S
2

K(D) :=
∑

D∈D

(1/m01(D) + 1/m02(D) + 1/m12(D) − 1) = 0 E
2

< H
2

as a general theorem of the structure D(D, ΣI , M) completely characterizes the

corresponding tiling: Whether it is realizable on the sphere S
2 (> 0) for so-called

“good orbifolds” which means roughly that the opposite points of the sphere have

the same stabilizer group, respectively (see e.g. [2]). Whether it is realizable in

the Euclidean plane E2(= 0), or in the Bolyai–Lobachevskian hyperbolic plane

H2 (< 0). Moreover, this formula can also be applied for higher dimensional

D-symbols to other index triples.

E.g. for d = 3, we consider the most important application, the spatial tilings

in the crystallography. Then the so-called partial D-symbol D3(D, ΣI\3, M
3), i.e.

we exclude the σ3 operation and the corresponding matrix entries, the remain-

ing 2-dimensional D-symbol components will characterize the 3-centre figures

of the solid(s) of the hypothetic tiling, might belong to the original D-symbol

D(D, ΣI , M). In the case of a proper 3-tiling these components each has to de-

scribe an S
2 tiling, easy to check by the above curvature formula. But similar
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criteria hold for the vertex figures, where the σ0 operation will be excluded from

the original 3-dimensional D-symbol. Any proper vertex will be described by an

S2 tiling, again.

We have just arrived to the main problem of D-symbols: whether a

well-formed symbol (satisfying the axioms) can be realized by a tiling

in an appropriate space or not. In dimensions d = 2 the above curvature

formula gives complete information (in case of S2 the good orbifolds can easily be

characterized). But for dimensions d = 3 only partial results are known.

E.g. in the joint work [1] we have described all the 88 face-transitive tilings

of the Euclidean space E3 by (marked) topological polyhedra. Our computer

program provided the possibilities, where the 3-dimensional D-symbol had the

partial D-symbol D2(D, ΣI\2, M
2) having only one component (this guaranteed

just the face-transitivity). Then the realizations were checked (not easily) by the

219 (known) isomorphism classes of the crystallographic groups of E3.

With my doctor students Rita Kós and Lajos Boróczki we are working on the

extensions of this problem circle to non-Euclidean geometries.

The situations are well-described in our summarizing paper [6], where besides

the classical spaces S3, E3, H3 of constant curvature other 5 Thurston geometries

S2 × R, H2 × R, ∼ SL2R, Nil and Sol also come into the game [8].

But now we are far from the starting problem of the paper !?!
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