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Teaching Gröbner bases

György Maróti

Abstract. In this article we offer a demonstration of how the StudentGroebner pack-
age, a didactic oriented Maple package for Gröbner basis theory, could assist the teach-
ing/learning process. Our approach is practical. Instead of expounding on deep didactic
theory we simply give examples on how we imagine experimental learning in classroom.
The educational goal is to prepare the introduction of two sophisticated algorithms,
the division algorithm and Buchberger’s algorithm, by gathering preliminary knowledge
about them.
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“Why is Gröbner Bases Theory Attractive?

The main problem solved by the theory can be explained is five minutes.

The algorithm that solves the problem can be learned in fifteen minutes

the theorem on which the algorithm is based is nontrivial to (invent and

to) prove, many problems in seemingly quite different areas of mathe-

matics can be reduced to the problem of computing Gröbner bases.”

Bruno Buchberger

Introduction

Most computer algebra systems like Maple, Mathematica, CoCoA and others

offer tools to work with multivariate polynomials and polynomial ideals (see [10],

[11] and [12]). Comprehensive list of different Gröbner Basis Implementations

can be found in [13]. The main effort behind these tools is to be as general and
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effective as possible. There is only one point lacking and this is the point of view

of didactics. For novice students, who meet first time in their life with multi-

variate polynomials, to see how division algorithm works or simply to calculate

an S-polynomial or a Gröbner basis of an ideal could become easily undoable.

Procedures do not help them in understanding. Students specify the input and

get an output without any clarification.

The StudentGroebner package (see [14]) addresses this kind of problems. It

offers a teaching/learning tool, which helps students to understand the work of

different algorithms by revealing the main steps of calculation, by showing the

loop invariant of cycles, by displaying the calling sequences of procedures up to a

user defined level and last but not least by clarifying the input and output data.

This article is devoted to show the didactic relevance of the StudentGroebner

package. The first section presents the main ideas behind the package without

the demand for completeness. Next two sections demonstrate the process of ex-

perimental learning with the StudentGroebner package in the classroom. The

method is to carry out different experiments with procedures which implement

the division algorithm and Buchberger’s algorithm (see [1], [6] and [7]). These

procedures are considered as black boxes during the process of experiments. Stu-

dents call them with different parameters and options, observe the output and try

to formulate facts, which are at this stage not more than conjectures. The labora-

tory work should end with the exact description of the algorithms and the proof

of facts to be conjectured. The last section illustrates the connection between

Euclidean Algorithm and Buchberger’s algorithm.

It has to be emphasized that each section below consists of one independent

sample whose aim is to present one possible usage of the StudentGroebner pack-

age. The main point is to show its didactic usefulness. It is always assumed that

the reader/students own all the prerequisites required for the understanding the

specific section. As for the notion and theorems of polynomial ideal theory the

reader is referred to [2], [4] and [5]. Detailed description of Maple can be found

in [8] and [9].

How to use the StudentGroebner package

The StudentGroebner package is an educational aid which on the one hand

promotes teachers and educators to make abstract mathematical objects and com-

plicated relations perceptible and on the other hand provides students to uncover

the inner behavior of sophisticated algorithmsin the field of Gröbner bases theory.
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The package was developed by the author in 2010 summer and autumn and

freely available to any Maple users, students and lecturers. It consists of 38

procedures, all together 1800 lines of concise Maple code. Besides some service

functions new types like ‘monomial’, ‘term’ and others are introduced by extend-

ing the functionality of Maple’s procedure ‘type’. Four procedures are devoted to

univariate polynomials, while the rest of the package handle the monomial orders,

the conversions between the different inner representations and offer functional-

ities from determining LT and LM of a polynomial through Dickson’ lemma to

S-polynomials and Buchbergher’s algorithm. In this section we give some intro-

ductory examples which demonstrate how these concepts have been realized.

Monomial orders play a central role in the theory of Gröbner bases. Most

theorems and arguments in textbooks begin with the phrase “fix a monomial

order” (whatever it is). To implement this phenomenon the introduction of default

monomial order seemed to be appropriate. Procedure SetP is devoted to manage

the default monomial order. Without parameter SetP returns its current value.

> SetP()

[ plex, [x, y, z, t, u, v ] ] (2.1)

This output specifies the type of monomial order (plex ), and the descending

list of variables: x > y > z > t > u > v. This means the symbols x, y, z, t, u, v

are considered to be variables, while any other symbols appearing in the polyno-

mials are parameters. Of course the user is allowed to define a different default

monomial order. The next two commands are self-explaining.

> SetP(tdeg)

[ tdeg, [x, y, z, t, u, v ] ] (2.2)

> SetP([a, b])

[ plex, [b, c ] ] (2.3)

SetP allows to use the same syntax for short monomial orders like Maple.

Notice that indexed variables are allowed and the number of variables is not

limited.

> SetP(grlex (t1, t2, t3, u1, u2, v, z, w))

[ grlex, [t1, t2, t3, u1, u2, v, z, w ] ] (2.4)

Let us return to the default monomial order, which can be done by the first

command below. It is a pleasant feature that SetP accepts a positive integer in

the range 1..6. By giving this integer we can simply specify how many variables

are intended to be used in the foregoing computation.
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> SetP(default)

[ plex, [x, y, z, t, u, v ] ] (2.5)

> SetP(3)

[ plex, [x, y, z ] ] (2.6)

The procedure OrderP returns the object of type short monomial order as

defined in Maple. OrderP can be used for example in the sort command and/or

in any call of procedures of the Groebner package where the monomial order is a

compulsory parameter.

> OrderP()

plex(x, y, z) (2.7)

> sort(z4 − 2 + 3 · x2 · y5, order=OrderP())

3x2y5 + z4 − 2 (2.8)

> Groebner :-LeadingMonomial(f ,OrderP())

x2y5 (2.9)

There are several options which can be given as arguments in the call of any pro-

cedure of the StudentGroebner package. In the following examples we illustrate

their use by applying them to the procedure LT which computes the leading term

of a polynomial. Let us define a polynomial f and then call the procedure LT.

> f :=z4 − 2 + 3 · x3 · y5

f := z4 − 2 + 3x3y5 (2.10)

> LT (f)

3x3y5 (2.11)

When we are confronted with this output for the first time it may happen that we

are not able to interpret it correctly. The option input helps in understanding.

> LT (f , input)

.Input(LT):

poly = z4 − 2 + 3x3y5

.Output(LT):

leading term = 3x3y5

.Result(LT):

3x3y5 (2.12)
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Let’s see in more detail what happens behind the scenes. In the next command

we use the option steps.

> LT (f , steps)

.Input(LT):

poly = z4 − 2 + 3x3y5

.Applied monomial order(LT):

[ plex, [x, y, z ] ]

.List of terms(LT):

[ z4,−2, 3x3y5 ]

.List of termvectors(LT):

[ [ 1, [ 0, 0, 4 ] ], [−2, [ 0, 0, 0 ] ], [ 3, [ 3, 5, 0 ] ] ]

.Maximal termvector(LT):

[ 3, [ 3, 5, 0 ] ]

.Output(LT):

leading term = 3x3y5

.Result(LT):

3x3y5 (2.13)

In return for the option steps, we learn that the applied monomial order is

plex (x, y, z). Next the procedure LT forms the list of terms of the polynomial f ,

converts each term to a termvector. There is one-to-one correspondent between

terms and termvectors, which are two element lists consisting of the coefficient

and the list of exponents of variables. Next LT computes the maximal termvector

according to the applied monomial order. In the end the procedure converts the

maximal termvector back to a term.

Notice that we have not specified the monomial orders to be applied in the

previous command. Therefore the current value of default monomial order has

been chosen. We are allowed, however, to prescribe arbitrary monomial order to

be applied.

> LT (f , input, tdeg(z, x))

.Input(LT):

poly = z4 − 2 + 3x3y5

.Output(LT):

leading term = z4
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.Result(LT):

z4 (2.14)

The option calculation offers another way to make the steps of calculation pro-

cess clear. In return for this option a matrix - which will be called calculation

table henceforth - is displayed, which contains results of milestones of the compu-

tational process. Of course the user has to learn how to read calculation tables,

but this is not a very strong requirement as the content of calculation tables is

easy to interpret. For example in our case the terms of the input polynomial are

listed in the first row. Next a term-to-termvector conversion has been performed.

In the end the algorithm determined the maximal element of termvectors and

converted the maximal termvector back to a term.

> LT (f , calc, tdeg(z, x), inp)

.Input(LT):

poly = z4 − 2 + 3x3y5

.Applied monomial order(LT):

[ [tdeg, [ [ z, x ] ] ] ]

.Calculation table(LT):











Terms: z4 −2 3x3y5

Termvectors: [ 1, [ 4, 0 ] ] [−2, [ 0, 0 ] ] [ 3y5, [ 0, 3 ] ]

Maxtermvector(0..i) [−∞, [ 0, 0 ] ] [ 1, [ 4, 0 ] ] [ 1, [ 4, 0 ] ] [ 1, [ 4, 0 ] ]

Maxterm: z4











.Output(LT):

leading term = z4

.Result(LT):

z4 (2.15)

Notice that we are allowed to use as many options as we want to and the order

of options is irrelevant. On the other hand the system checks only the first three

characters of the options. Therefore we could write calc instead of calculation

and inp instead of input.

The scope of every options is the procedure whose argument it is listed in.

This means that the option is not used for those procedures which are called

within the body of the main procedure. This can be overwritten by using the

option level=n, where n is a positive integer. In the next command the option
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steps is applied to the procedure LM and to any procedures called from within

LM. Be aware of using this option as higher levels could result in tremendous

output. All the same this is an impressive feature which clearly shows the calling

tree and the computations at different levels.

> LM (f , ste, level=2)

.Input(LM):

poly = z4 − 2 + 3x3y5

.Applied monomial order(LM):

[ plex, [x, y ] ]

..Input(LT):

poly = z4 − 2 + 3x3y5

..Applied monomial order(LT):

[ plex, [x, y ] ]

..List of terms(LT):

[ z4,−2, 3x3y5 ]

..List of termvectors(LT):

[ [ z4, [ 0, 0 ] ], [−2, [ 0, 0 ] ], [ 3, [ 3, 5 ] ] ]

..Maximal termvector(LT):

[leading coefficient, leading monomial] = [ 3, [ 3, 5 ] ]

.Output(LM):

leading monomial = x3y5

.Result(LM):

x3y5 (2.16)

The procedures of StudentGroebner package are less effective than that of

Groebner package of Maple. This is because StudentGroebner’s procedures spend

a lot of time and use a lot of extra memory for administrative works. Therefore,

if someone is interested in the results only the fastest way is the use of Maple’s

Groebner package. But this can be achieved by the option groebner as well.

In this way the StudentGroebner package offers another interface to access the

procedures of Maple’s Groebner package.
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> LT (z2 − y2, groebner, ste, [y, z])

.Input(LT):

poly = z2 − y2

.Applied monomial order(LT):

[ plex, [y, z ] ]

.Output by Groebner:-LeadingTerm(LT):

−y2

.Result(LT):

−y2 (2.17)

Experimental learning 1: understanding the division algorithm

The division algorithm formultivariate polynomials is one of the key ingredi-

ents of Gröbner bases theory. Its detailed exposition can be found in all surveys

and text books (see [2], [4] and [5]). In this section we present one possible

preparation of the introduction of the division algorithm for multivariate polyno-

mials. What we do is to show a sequence of experiments. Every experiment is

an interaction between the teacher and the students. The teacher performs a few

commands and the students are asked to interpret what they see on the screen

and try to formulate statements. Student’s remarks can of course be either partly

or totally wrong or correct. It is the teachers job to prepare sufficiently many

different procedure calls for guiding the students to recognize the right facts.

It has to be emphasized what we do is just the preparation process which

precedes and by no means replaces the exact discussion. We use procedure DivP

as black box and call it by a dividend and divisors. In each experiment we set forth

the motivation and the phenomena to be observed. By the end of such common

work students should have a strong impression how the division algorithm works,

which in turn should make the abstract discussion easier and much more efficient.

Experiment 1

Motivation

The procedure DivP works on polynomials in an arbitrary number of vari-

ables. We expect it to work in the same or at least in a similar way as the division
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of univariate polynomials.

> SetP(3)

[ plex, [x, y, z ] ] (3.1)

> f := (x + y) · (x2 · y + y3)

f := (x + y)(x2y + y3) (3.2)

> g := x + y

g := x + y (3.3)

> DivP(f , g, inp, cal)

.Input(DivP):

dividend: f = (x + y)(x2y + y3)

divisor: G = [ x + y ]

.Applied monomial order(DivP):

[ [ plex, [ [ x, y, z ] ] ] ]

.Calculation table(DivP):













G1 = x + y
p r q1 LT (p) LT (G1) Aux

x3y + x2y2 + xy3 + y4 0 0 x3y x x2y(x + y) = x3y + x2y2

xy3 + y4 0 x2y xy3 x y3(x + y) = xy3 + y4

0 0 x2y + y3













.Output(DivP):

[ remainder = 0, quotient = [ x2y + y3 ] ]

.Result(DivP):

0, [ x2y + y3 ] (3.4)

Facts to be explored by students

1. The two steps if the calculation table of DivP are the same as that in the

univariate case.

2. In the last step the current dividend equals 0.

3. The remainder equals zero in every row (what does it mean?).
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Experiment 2

Motivation

What makes it possible to perform all the steps in the computation above?

The leading term of the divisor, LT (G1) divides the leading term of the current

dividend LT (p) in every row of the calculation table. As it is unlikely that this

always happens, we have to check other dividend and divisors.

> f := (x2 + x) · (x2 · y)

f := (x2 + x)x2y (3.5)

> g := x · y − 1

g := xy − 1 (3.6)

> DivP(f , g, inp, cal)

.Input(DivP):

dividend: f = (x2 + x)x2y

divisor: G = [ xy − 1 ]

.Applied monomial order(DivP):

[ [ plex, [ [ x, y, z ] ] ] ]

.Calculation table(DivP):




















G1 = xy − 1
p r q1 LT (p) LT (G1) Aux

x4y + x3y 0 0 x4y xy x3(xy − 1) = x4y − x3

x3y + x3 0 x3 x3y xy x2(xy − 1) = x3y − x2

x3 + x2 0 x3 + x2 x3

x2 x3 x3 + x2 x2

0 x3 + x2 x3 + x2





















.Output(DivP):

[ remainder = x3 + x2, quotient = [ x3 + x2 ] ]

.Result(DivP):

x3 + x2, [ x3 + x2 ] (3.7)

Facts to be explored by students

1. When the leading term of the current dividend is not divisible by the leading

term of the divisor, we add this leading term the remainder, while subtract

it from the dividend.
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2. Next we continue the calculation in the same way.

Experiment 3

Motivation

It is well known that in case of univariate polynomials every ideal is principal,

i.e. can be generated by one polynomial. On the other hand the division algorithm

is capable of solving the ideal membership problem for univariate ideals as

f ∈ 〈g〉 if and only if Rem(f, g) = 0.

On the other hand in case of multivariate polynomials there are ideals which

are not principal. Hence, if we expect the division algorithm to solve the ideal

membership problem we have to allow several divisors. This is extremely strange

at first glance. Of course, if we have several divisors, we must have the same

number of quotients.

> f := x · y2 + x2 · y + y2

f := x2y + xy2 + y2 (3.8)

> g1 := y2 − 1

g1 := y2 − 1 (3.9)

> g := x · y − 1

g2 := xy − 1 (3.10)

> DivP(f , [g1, g2], inp, cal, invariant)

.Input(DivP):

dividend: f = x2y + xy2 + y2

divisor: G = [ y2 − 1, xy − 1 ]

.Applied monomial order(DivP):

[ [ plex, [ [ x, y, z ] ] ] ]

.Calculation table(DivP):


























G1 = y2 − 1 G2 = xy − 1

p r q1 q2 LT (p) LT (G1) LT (G2) Aux p + G1q1 + G2q2 + r

x2y + xy2 + y2 0 0 0 x2y xy x(xy − 1) = x2y − x x2y + xy2 + y2

xy2 + x + y2 0 0 x xy2 y2 x(y2 − 1) = xy2 − x x2y + xy2 + y2

2x + y2 0 x x 2x x2y + xy2 + y2

y2 2x x x y2 y2 y2 − 1 = y2 − 1 x2y + xy2 + y2

1 2x x + 1 x 1 x2y + xy2 + y2

0 2x + 1 x + 1 x x2y + xy2 + y2


























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.Output(DivP):

[ remainder = 2x + 1, quotient = [ x + 1, x ] ]

.Result(DivP):

2x + 1, [ x + 1, x ] (3.11)

Facts to be explored by students

1. DivP chooses the first of divisor from left to right, whose leading term divides

the leading term of the current dividend. In other words the algorithm chooses

one possible divisor and perform the same steps as before.

2. The algorithm results in the following equality (see loop invariant in the last

column of calculation table

f = g1 · q1 + . . . + gs · qs + r

3. For the remainder we either have r = 0 or no term of r is divisible by the

leading term of any divisor.

At this point the our lecture should be continued by an exact mathematical

discussion of the division algorithm, which transforms the procedure DivP to a

white box. This is, however, beyond the scope of this lecture.

Experimental learning 2: understanding Buchberger’s algorithm

The original source for the algorithm computing a Gröbner basis of polyno-

mial ideal published by Bruno Buchberger can be found in [3]. As for the detailed

discussion of Buchberger’s algorithm including the proof of correctness, the imme-

diate consequences and its typical usage the reader is referred to [2], [4] and [5].In

this section we present two experiments for discovering Buchberger’s algorithm.

Our method is the same as in the previous section.

Let us set the default monomial order and create a list of polynomials which

is considered to be a basis of an ideal.

> SetP(tdeg(x, y, z))

[ tdeg, [x, y, z ] ] (4.1)

> F := [ x − z4, y − x · z5 ]

F := [ x − z4, y − xz5 ] (4.2)
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Experiment 1

Motivation

Buchberger’s algorithm generates Gröbner basis from a given basis of an ideal.

Let us see how it works and collect our first experiences.

> BuchbergerP(F , bas)

.Input(BuchbergerP):

G = [−z4 + x,−xz5 + y ]

.1.New basis(BuchbergerP):

G = [−z4 + x,−xz5 + y,−x2z + y ]

.2.New basis(BuchbergerP):

G = [−z4 + x,−xz5 + y,−x2z + y, yz3 − x3 ]

.3.New basis(BuchbergerP):

G = [−z4 + x,−xz5 + y,−x2z + y, yz3 − x3, x5 − y2z2 ]

.Result(BuchbergerP):

[−z4 + x,−xz5 + y,−x2z + y, yz3 − x3, x5 − y2z2 ] (4.3)

Facts to be explored by students

1. The algorithm extends the basis step by step. More specifically one new

polynomial is added to the current basis.

2. Explain that the ideal generated by the polynomials listed in step 2 contains

the ideal generated by the polynomials in step 1. Is the similar statement

true for step 3 and step 2?

Experiment 2

Motivation

On the evidence of the first experiment we do not know what kind of polyno-

mials are added to the current base. It would be desirable to have more detailed

information.
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> BuchbergerP(F , cal)

.Calculation table:(BuchbergerP):








































G Indexes Index Spoly Rem(Spoly, G) Action

[−z4 + x,−xz5 + y ] [ [ 1, 2 ] ] [ 1, 2 ] −x2z + y −x2z + y added

[−z4 + x,−xz5 + y,−x2z + y ] [ [ 1, 3 ], [ 2, 3 ] ] [ 1, 3 ] yz3 − x3 yz3 − x3 added

[−z4 + x,−xz5 + y,−x2z + y, yz3 − x3 ] [[2, 3], [1, 4], [2, 4], [3, 4]] [ 2, 3 ] yz4 − xy 0 discarded

[ [ 1, 4 ], [ 2, 4 ], [ 3, 4 ] ] [ 1, 4 ] x3z − xy 0 discarded

[ [ 2, 4 ], [ 3, 4 ] ] [ 2, 4 ] x4z2 − y2 0 discarded

[ [ 3, 4 ] ] [ 3, 4 ] x5 − y2z2 x5 − y2z2 added

[−z4 + x,−xz5 + y,−x2z + y, yz3 − x3, x5 − y2z2] [[1, 5], [2, 5], [3, 5], [4, 5]] [ 1, 5 ] y2z6 − x6 0 discarded

[ [ 2, 5 ], [ 3, 5 ], [ 4, 5 ] ] [ 2, 5 ] y2z7 − x4y 0 discarded

[ [ 3, 5 ], [ 4, 5 ] ] [ 3, 5 ] y2z3 − x3y 0 discarded

[ [ 4, 5 ] ] [ 4, 5 ] −x8 + y3z5 0 discarded









































.Result(BuchbergerP):

[−z4 + x,−xz5 + y,−x2z + y, yz3 − x3, x5 − y2z2 ] (4.4)

Facts to be explored by students

1. The current bases is extended by the S-polynomial of two of its elements. Is

this sufficient to state that the ideals generated by the polynomials in different

steps of the algorithm are the same?

2. Spoly(f, g) is added to the basis if and only if Rem(Spoly(f, g), G)=0.

3. What is the condition which holds for the last basis and does not hold for

the first three ones? The answer for this question is very important as this is

the necessary and sufficient condition for a basis to be of Gröbner type.

4. What is the role of the row named Indexes? Explain that in each row the

list of indexes contains pair [ i, j ] if and only if the ith and jth polynomial of

the current bases has not been checked yet. Checking means testing whether

Rem(Spoly(f, g), G)=0.

Explore Buchberger’s algorithm

Every ideal of the ring of univariate polynomials is principal, i.e. it can be

generated by one polynomial. If the ideal in concern is generated by the two

polynomials f and g then the one element basis can be found by forming the

greatest common divisor of f and g. This computation can be performed by the

Euclidean Algorithm (EA). On the other hand one element bases are necessarily

of Gröbner type and reduced, provided the generating polynomial is monic. This

yields that Buchberger’s algorithm with option reduced must give the same result

as EA if we apply to two univariate polynomials. Let us see an example.
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> f :=expand((x − 3) · (x4 + 5 · x − 1))

f := x5 − 3x4 + 5x2 − 16x + 3 (5.1)

> g :=expand((x − 3) · (x2 + 4))

g := x3 − 3x2 + 4x − 12 (5.2)

> EA(f ,g, cal, monic)
.Calculation table(EA):









Dividend Divisor Remainder
x5

− 3x4 + 5x2
− 16x + 3 x3

− 3x2 + 4x − 12 5x2
− 45

x3
− 3x2 + 4x − 12 5x2

− 45 13x − 39
5x2

− 45 13x − 39 0









.Result(EA):

x − 3 (5.3)

> BuchbergerP([f, g], reduced)

[ x − 3 ] (5.4)

The didactic challenge here is how can we illustrate this phenomenon.? In

other words how can we explore and clarify this close connection between EA and

Buchberger’s algorithm?

At first let us investigate S-polynomials of univariate polynomials. For the

sake of simplicity suppose that

deg(f) ≥ deg(g) and LC(f) = 1.

In this case

LCM(LM(f),LM(g)) = xmax(deg(f),deg(g)) = LM(f) = LT(f),

which yields

Spoly(f, g) =

LCM(LM(f),LM(g))

LT(f)
·f−

LCM(LM(f),LM(g))

LT(g)
·g =

LT(f)

LT(f)
·f−

LT(f)

LT(g)
·g = f−

LT(f)

LT(g)
·g.

This equality tells us that the S-polynomial of univariate polynomials is nothing

else than the result of the iteration step in the division algorithm.

> SetP(1)

[ plex, [ x ] ] (5.5)
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> SpolyP(f, g)

−4x3 + 17x2 − 16x + 3 (5.6)

> DivuniP(f, g, cal):
.Calculation table(DivuniP):









q = quotient r = remainder deg(r) >= deg(g) [LT(r), LT(g)] LT(r)/LT(g)
0 x5 − 3x4 + 5x2 − 16x + 3 true [x5, x3 ] x2

x2 −4x3 + 17x2 − 16x + 3 true [−4x3, x3 ] −4
x2 − 4 5x2 − 45 false









.Result(DivuniP):

In particular when the division procedure consists of one step, we have

Spoly(f, g) = Rem(f, g).

> f :=expand((x − 3) · (x3 + 5 · x − 1))

f := x4 − 3x3 + 5x2 − 16x + 3 (5.7)

> SpolyP(f, g)=DivuniP(f, g,rem)

x2 − 4x + 3 = x2 − 4x + 3 (5.8)

Now let us perform in parallel the Euclidean algorithm and Buchberger’s algo-

rithm for the same univariate dividend and divisor.

Euclidean algorithm

This column shows the calculation table of EA. The first division of this EA

consists of one step, while calculation table of the second division is shown in 5.10

below.

> EA(f , g, inp, cal)

.Input(EA):

f = x4 − 3x3 + 5x2 − 16x + 3

g = x3 − 3x2 + 4x − 12

.Calculation table(EA):










Dividend Divisor Remainder

x4 − 3x3 + 5x2 − 16x + 3 x3 − 3x2 + 4x − 12 x2 − 4x + 3

x3 − 3x2 + 4x − 12 x2 − 4x + 3 5x − 15

x2 − 4x + 3 5x − 15 0










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.Output(EA):

gcd(f, g) = 5x − 15

.Result(EA):

5x − 15 (5.9)

Next command shows the details of the second division of the Euclidean Algorithm

above.

> DivuniP(x3 − 3x2 + 4x − 12, x2 − 4x + 3, rem, cal, inp)

.Input(DivuniP):

dividend : f = x3 − 3x2 + 4x − 12

divisor : g = x2 − 4x + 3

.Calculation table(DivuniP):









q = quotient r = remainder deg(r) >= deg(g) [LT(r),LT(g)] LT(r)/LT(g)
0 x3

− 3x2 + 4x − 12 true [ x3, x2 ] x
x x2 + x − 12 true [ x2, x2 ] 1

x + 1 5x − 15 false









.Output(DivuniP):

quotient = x + 1

remainder = 5x − 15

.Result(DivuniP):

5x − 15 (5.10)

Buchberger’s algorithm

Step 0. The initial basis is G = [ f, g ].

> G := [ f, g ]

G := [x4 − 3x3 + 5x2 − 16x + 3, x3 − 3x2 + 4x − 12] (5.11)

G contains the divisor of the FIRST iteration of EA.

Step 1. Condition Rem(Spoly(f, g), G)=0 is to be checked now.

> SpolyP(f, g)

x2 − 4x + 3 (5.12)

As the condition is false S-polynomial which equals Rem(f, g) is added to the

basis.
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> G := [ f, g, x2 − 4x + 3 ]

G := [ x4 − 3x3 + 5x2 − 16x + 3, x3 − 3x2 + 4x − 12, x2 − 4x + 3 ] (5.13)

G contains the divisor of FIRST TWO iteration of EA.

Step 2. Continue the extension of the basis. Let us check the S-polynomial of g

and the newly added basis element.

> SpolyP(x3 − 3x2 + 4x − 12, x2 − 4x + 3)

x2 + x − 12 (5.14)

Because the remainder differs from zero this S-polynomial is also added to G.

> G := [ f, g, x2 − 4x + 3, x2 + x − 12 ]

G := [ x5−3x4 +5x2−16x+3, x3−3x2 +4x−12, x2−4x+3, x2+x−12 ] (5.15)

Note that x2 +x−12 is not the remainder, just the result of the first iteration

of the division algorithm (see ‘remainder’ column in 4.20). On the same time the

base G still contains the divisor, so we can choose it again in the next extension

step.

> SpolyP(x2 + x − 12, x2 − 4x + 3)

5x − 15 (5.16)

We obtained the result of the division algorithm’s second iteration (see 4.20

below), which equals the last divisor of EA. As this S-polynomial must be added

to G as well, we have

> G := [ f, g, x2 − 4x + 3, x2 + x − 12, 5x− 15 ]

G := [ x4−3x3 +5x2−16x+3, x3−3x2 +4x−12, x2−4x+3, x2 +x−12, 5x−15 ]

(5.17)

G contains the divisor of the FIRST THREE iterations of EA.

In this way G contains ALL divisors of the Euclidean Algorithm, among them

the last one: GCD(f, g). By this step we have reached a Gröbner bases of the

ideal in question.

> IsGroebnerP(G)

true (5.18)

This example clearly demonstrates that in the course of basis extensions all

polynomials which appear during the series of divisions in Euclidean Algorithm
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become elements of the bases generated by Buchberger’s algorithm. In this way

all divisors of EA, in particular the latest one, which is nothing else than the

greatest common divisor, are also added to the basis.

This basis contains superfluous elements. As we know that [GCD(f, g) ] is

the reduced Gröbner basis of the ideal 〈f, g〉 we must obtain a one element basis

if we perform the reduction of G.

> reduceP(G)

[ x − 3 ] (5.19)

Conclusion

This lecture is the first attempt to illustrate the usage of the StudentGroeb-

ner package. Unlike geometrical objects polynomials are symbolic and abstract.

Working with multivariate polynomials is not easy for several reasons. Polynomi-

als of this type consist of a lot of letters, in most cases they are too long to read

and perceive them at a glance. More important, making calculations with long

strings by hand is exhausting and as a consequence of too many handwriting, it

may be a source of different mistakes. All these yield that students need tools,

which help them in performing long computations, in displaying the inner struc-

ture of sophisticated algorithms and last but not least in showing the preliminary

result of complex symbolic computations. StudendGroebner package could be

one possible answer to this challenge.
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[7] A. Heck, Bird’s-eye view of Gröbner Bases, Nuclear Inst. and Methods in Physics
Research A 389 (1997), 16–21,
http://staff.science.uva.nl/∼heck/AIHENP96/groebnerbasis.pdf.

[8] A. Heck, Introduction to Maple, Third Edition, Springer, 2003.
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