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Longest runs in coin tossing.

Teaching recursive formulae,

asymptotic theorems and computer

simulations

Zsolt Karácsony
∗ and Józsefné Libor

Abstract. The coin tossing experiment is studied, focusing on higher education. The

length of the longest head run can be studied by asymptotic theorems ([3]), by recursive

formulae ([10]) or by computer simulations . In this work we make a comparative analysis

of recursive formulas, asymptotic results and Monte Carlo simulation for education. We

compare the distribution of the longest head run and that of the longest run (i.e. the

longest pure heads or pure tails) studying fair coin events. We present a method that

helps to understand the concepts and techniques mentioned in the title, which can be a

useful didactic tool for colleagues teaching in higher education.
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1. Introduction

Recursive formulae, asymptotic theorems and simulations play an important

role in several fields of math-teaching in higher education. But the exact knowl-

edge of these notions leaves a lot to be desired. The study of some illustrative
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problems may help to understand them. While solving these problems students

have an opportunity to compare these definitions. In this paper we shall use the

well-known coin tossing experiment to compare the results of recursive formulae,

asymptotic theorems and computer simulations. In connection with coin tossing

we examine the length of the longest run. For a sequence of independent coin

tosses with p (0 ≤ p ≤ 1), the longest run of consecutive heads in the first n

tosses is a natural object of study. In our work the longest run means the longest

sequence of the same objects, for example the longest head-run means the longest

sequence among the sequences of homogeneous heads, which is not interrupted by

tail. Our research includes the examination of the length of the longest head-run

and the length of the longest whatever – head or tail – run, studying fare coin.

The following well-known example by T. Varga can be an interesting intro-

duction to the problem for students. We can read this for example in Révész

[8]. A class of school children is divided into two sections. In one of them each

child is given a coin which he throws two hundred times, recording the resulting

head and tail sequence on a piece of paper. In the other section the children

do not receive coins but are told instead that they should try to write down a

’random’ head and tail sequence of length in 200. Collecting and mixing all the

slips of paper, the teacher then tries to subdivide them into their original groups.

Most of the time he succeeds quite well. His secret is that he has observed the

following. In a randomly produced sequence of length in two hundred, there are,

say, head-runs of length seven (knowing Rényi’s log2200 result). On the other

hand, he has also observed that most of those children who had to write down

an imaginary random sequence are usually afraid of writing down runs of longer

than four. Hence, in order to find the slips coming from the coin tossing group,

he simply selects the ones which contain runs longer than five. When we had the

privilege of meeting professor Révész, he talked about the continuation of Varga’s

experiment. He made his students acquainted with Varga’s experiment and the

result of it. Then they made the trial again. Professor Révész was successful in

subdividing the slips of paper with quite good accuracy again. His secret was very
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easy. The students focused on the length of pure head run for example, but they

did not pay attention to the length of pure tail run or the length of the head-tail

pairs run. These experiments led us to ask the following questions. What is the

length of the longest head run or the longest whatever run in coin tossing?

For the investigation of the mentioned definitions (recursive formula, asymp-

totic theorem, simulation) our chosen field – coin tossing – is perfect in many

respects. We know that there is no exact and closed formula to give the length

of the longest run in case of any n. The recursive formulae are exact, – they give

correct results – but using them for large n, is very time- and storage-consuming

even if we use very good computer. For large n we can use the asymptotic the-

orems, but these give only approaching results. And finally, the simulation gives

an average value from a lot of repetitions of the trial. Considering these, we can

examine the meaning of these definitions by studying the coin tossing trial. Our

graphs will show the differences between the values in case of small and large n

too and the limits of the scope of the notions.

Consider n independent tosses of a fair coin, and let Rn represent the length

of the longest run of heads, and similarly let R′
n be the length of the longest

whatever (head or tail) run. As we have got a regular (fair) coin, the probability

of head-tossing equals p = 0.5, and of course the probability of tail-tossing is

equal to q = 1 − p = 0.5. The problem facing us is the following. What is the

length of the longest head or whatever run?

2. Recursive formulae

Sometimes it is difficult to define an object explicitly. However, it may be

easy to define the object in terms of itself. The recursive functions, which form

a class of computable functions, take their name from the process of ’recurrence’

or ’recursion’. In its most general numerical form the recursion process consists

in defining the value of a function by using other - the previous - values of the

same function. A recursive sequence is a sequence of numbers f(n) indexed by
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an integer n and generated by solving a recurrence equation. First we have to

give the initial condition that tells where the sequence starts, then the recursion

formula that tells how any term of the sequence relates to the preceding term.

And now back to our coin tossing problem.

2.1. Longest head run

Let Rn represent the length of the longest run of heads and let An(x) be the

number of sequences of length n in which the longest head run does not exceed

x. The (cumulative) distribution function of Rn is

Fn(x) = P (Rn ≤ x) =
An(x)

2n
. (1)

Using the results of Schilling [10], we have the following recursive formula for

An(x)

An(x) =















x
∑

j=0

An−1−j(x), if n > x,

2n, if 0 ≤ n ≤ x.

(2)

To see how this works, consider the case in which the longest head run consists

of at most four heads. If n ≤ 4, then clearly An(4) = 2n since any outcome is

a favorable one. For n > 4, each favorable sequence begins with either T, HT,

HHT, HHHT or HHHHT and is followed by a string having not more than four

consecutive heads. Thus, An(4) = An−1(4) + An−2(4) + An−3(4) + An−4(4) +

An−5(4) for n > 4. From this we can calculate the values of An(4):

n 0 1 2 3 4 5 6 7 8 . . .

An(4) 1 2 4 8 16 31 61 120 236 . . .
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Remark 1. For n = 1, 2, 3, . . . , the number An(1) of sequences of length

n where n does not continue two consecutive heads is the (n + 2)nd Fibonacci

number.

Remark 2. The values of An(k) can be given with the help of kth degree

Fibonacci numbers. Moreover, we can study the case of biased coins using the

application of kth degree Fibonacci polynomials. (See Philippou–Makri, [6].)

2.2. Longest whatever run

Consider n independent tosses of a fair coin, and let R′
n represent the length

of the longest run of heads or tails (whatever). If Bn(x) is the number of sequences

of length n in which the longest run does not exceed x, then the (cumulative)

distribution function is F ′
n(x) = P (R′

n ≤ x) = Bn(x)
2n . Schilling [10] has proved

that Bn(x) = 2An−1(x − 1), for x ≥ 1.

To prove it consider a sequence of length n consisting of signs H and T

(representing ‘head’ and ‘tail’, respectively). Write below of this sequence another

sequence of signs S and D (representing ‘same’ and ‘different’, respectively). We

write S if two consecutive signs in the first sequence are the same, and write D

if they are different. Now a run of length x − 1 consisting of signs S represents a

run of length x in the first sequence. We also see that any sequence containing

signs S and D belongs to two sequences of signs H and T. Finally, observe that

An−1(x − 1) can be considered as the number of sequences of length n − 1 and

containing signs S and D but not having S-run of length x.

The example below shows one of the strings that contributes to B13(4):

H H H T H T H T T T T H H

S S D D D D D S S S D S

So we can reduce this case to the case of the longest head run

F
′

n
(x) = P (R′

n
≤ x) =

Bn(x)

2n

=
2An−1(x − 1)

2n

=
An−1(x − 1)

2n−1
= Fn−1(x − 1). (3)
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The implication of (3) is that for n tosses of a fair coin the longest run tends

to be one longer than the longest run of heads alone.

3. Asymptotic theorems

First we recall two well-known asymptotic results of probability theory. The

law of large numbers asserts that the arithmetical mean of independent observa-

tions converges to the expectation as the number of observations tends to infinity.

In statistics the consistency of estimators is based on the law of large numbers.

An important particular case is the Bernoulli law of large numbers, i.e. the rela-

tive frequency converges to the probability. The formal statement is the following

(Kolmogorov’s strong law of large numbers (SLLN)). Let X1, X2, . . . , be inde-

pendent identically distributed (i.i.d.) random variables with E|Xi| < ∞ and

E(Xi) = m. Then X1+X2+...+Xn

n
→ m almost surely.

The second basic result is the central limit theorem (CLT). It means that

the sequence of the standardized partial sums converges to the standard normal

distribution. In statistics the asymptotic normality of estimators (e.g. the max-

imum likelihood estimator) and the asymptotic distribution of certain statistics

(e.g. χ2 statistic) are based on CLT’s. The formal statement is the following. Let

X1, X2, . . . be i.i.d. random variables, let 0 < σ2 = D2(Xi) < ∞, E(Xi) = m.

The distribution of X1+X2+...+Xn−nm√
nσ

converges to the standard normal law.

For the longest head run we have both strong limit theorems and results on

the limiting behavior of the distribution. A well-known theorem of Rényi says

that the length of the longest run in n tosses of a fair coin is about log2n. This

was generalized to excessive blocks by the Erdős–Rényi [2] laws of large numbers.

For the limiting behavior of the distributions there are several known results.

Let us see the case of the longest head run. The asymptotic behavior of Rn is

described by the following theorem.
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Theorem 1 (Földes (1979) [3]). For any integer k we have

P (Rn − [log2 n] < k) = exp
(

−2−(k+1−{log
2

n})
)

+ o(1), (4)

where [a] denotes the integer part of a and {a} = a − [a].

Similarly we can see the asymptotic behavior of R′
n. Using the above theorem

of Földes and (3) we have the following asymptotic result for R′
n.

Theorem 2. For any integer k we have

P (R′
n − [log2(n − 1)] < k) = exp

(

−2−(k−{log
2
(n−1)})

)

+ o(1). (5)

where [a] denotes the integer part of a and {a} = a − [a].

We see that both of the above theorems are different from the CLT. We

have no asymptotic normality. Moreover, we have no fixed limiting distribu-

tion. The only possibility is to construct a sequence of ’accompanying laws’.

That is the distribution of Rn − [log2 n] close to a certain sequence as n → ∞,

i.e. P (Rn − [log2 n] < k) − exp(−2−(k+1−{log
2

n})) → 0 as n → ∞. The periodic

behavior of Rn − [log2 n] is presented in the following figure (the numerical cal-

culation behind it is based on the recursion (1) and (2)).

4. Simulation

Stochastic simulation is a well-known method of numerical mathematics. This

method is also called the Monte Carlo method after the city in the Monaco Prin-

cipality, because of roulette, a simple random number generator. The name and

the systematic development of this method dates from about 1944. Simulation

methods can play an important role in teaching several topics not only mathe-

matics.
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Figure 1. P (Rn = [log2 n] − 1) , n = 26, . . . , 212, p = 0.5

“The main idea of the law of large numbers - the larger the sample size,

the greater the likelihood that a specific experimental result will be closer to the

theoretical one - is misunderstood by pupils. Teaching through simulations can

catalyze comprehension of existing concepts among pupils and develop their sto-

chastic reasoning. Through simulations, it is possible to develop an understanding

of particularly elementary concepts, and to learn that drawing conclusions should

be based on large samples, whereas small samples usually lead to the wrong con-

clusions.” (See [1]) “The Monte Carlo method provides approximate solutions to a

variety of mathematical problems by performing statistical sampling experiments

on a computer. The method applies to problems with no probabilistic content

as well as to those with inherent probabilistic structure.” (See [7]) Applying the

popular Markov Chain Monte Carlo (MCMC) method we can calculate certain

hard-to-compute quantities (in say physics).

Here we deal with the simplest version of the stochastic simulation. We

need the numerical value of a quantity p. Moreover, p can be considered as

the probability of an event A: P (A) = p. Repeat the experiment N times and
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calculate the relative frequency of A. Denote it by kA

N
. Then, by the Bernoulli law

of large numbers, kA

N
→ p almost surely as N → ∞. However, usually we make

our experiment on a computer. Using our computer programme, we build the

experiment, and we record if A occurs or not. Repeat the computer experiment N

times. It means that we run our programme N times with N consecutive random

numbers. However, as the coin tossing experiment is a random experiment itself,

we develop our computer model as follows. Using the first n random numbers, we

can perform the coin tossing experiment of length n. Then repeat it N times (N

is a large integer, N = 1000, say). Therefore, for any fixed n, the distribution of

Rn can be obtained as N → ∞. (It is an important issue, because in the previous

section we considered the asymptotic distribution of Rn, as n → ∞.)

5. Comparison of numerical results

Now let us see our problem. For numerical calculations we used MATLAB

software and a high-capacity PC (INTEL Core Quad Q9550 processor, 4Gb.

DDR3 memory). We calculated the distribution of Rn and R′
n. We consid-

ered the precise values obtained by recursions, the asymptotic values offered by

asymptotic theorems, and used simulation with 20,000 repetitions. On the figures

below × denotes the result of the recursion, o belongs to the asymptotic result,

while the histogram shows the relative frequencies calculated by simulation. On

the left side you can see the case of the longest head run and on the right side

you can see the case of the longest whatever run.
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(a) Distribution of the longest
head run p = 0.5, n = 50

(b) Distribution of the longest
head run p = 0.5, n = 50

(c) Distribution of the longest
head run p = 0.5, n = 250

(d) Distribution of the longest
head run p = 0.5, n = 250
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(e) Distribution of the longest
head run p = 0.5, n = 1000

(f) Distribution of the longest
head run p = 0.5, n = 1000

(g) Distribution of the longest
head run p = 0.5, n = 3100

(h) Distribution of the longest
head run p = 0.5, n = 3100
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(i) Distribution of the longest
head run p = 0.5, n = 50000

(j) Distribution of the longest
head run p = 0.5, n = 50000

6. Conclusions

First we emphasize that the precise values of the distributions are given by

the recursive formulae. The practical drawbacks of recursive formulae are the

following. They are limited by the capacity of the computer and they can be

influenced by numerical errors. On the other hand, asymptotic theorems always

offer approximations but they are easy to compute. The approximations are quite

bad for a small n but they are almost precise for a large n. Finally, simulation

always gives random approximations but it is quite precise if the number of repeti-

tions is large. The above figures show the properties of the procedures mentioned.

For a fair coin we studied short trials (n = 50), medium size trials (n = 250),

long trials, (n = 1000 and n = 3100) and very long trials (n = 50, 000).

If n is small or medium sized, we can see that the recursive results are closer

to the simulated values, than the results given by asymptotic theorems. Although

we can say that if n is small, the recursive algorithm is fast, but it slows down if
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n increases. The next table demonstrates this statement showing some running

times.

n repet. running time

100,000 20,000 773.575832 s.

10,000 20,000 31.795056 s.

5,000 20,000 14.398654 s.

3,100 20,000 9.009479 s.

1,000 20,000 3.984981 s.

500 20,000 3.240019 s.

250 20,000 2.412824 s.

50 20,000 2.092010 s.

30 20,000 1.935557 s.

For a large n the asymptotic values are closer to the simulated results, so

we can use them instead of the recursive values. The asymptotic value is a good

approximation if n ≥ 1000, and it is practically precise if n ≥ 10, 000.

The figures show that the distribution of R′
n can practically be obtained from

the distribution of Rn by shifting it to the right by 1, as we have seen in (3).
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[3] A. Földes, The limit distribution of the length of the longest head-run, Period.

Math. Hungar. 10, no. 4 (1979), 301–310.

[4] N. Metropolis, The Beginning of the Monte Carlo Method, Los Alamos Science,

Special Issue, 1987.

[5] N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American

Statistical Association 44, no. 247 (Sep. 1949), 335–341.



“tmcs-karacsony” — 2011/11/20 — 19:51 — page 274 — #14
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