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Arithmetic progressions of higher

order

Vlastimil Dlab

Abstract. The aim of this article is to clarify the role of arithmetic progressions of
higher order in the set of all progressions. It is important to perceive them as the
pairs of progressions closely connected by simple relations of differential or cumulative
progressions, i.e. by operations denoted in the text by ∆ and ∇. This duality affords
in a natural way the concept of an alternating arithmetic progression that deserves
further studies. All these progressions can be identified with polynomials and very
special, explicitly described, recursive progressions. The results mentioned here point to
a very close relationship among a series of mathematical objects and to the importance
of combinatorial numbers; they are presented in a form accessible to the graduates of
secondary schools.

Key words and phrases: arithmetic progressions, polynomials, recursive progressions.

ZDM Subject Classification: D40, D80, H20, K20, U30.

Introduction

The progression

a1 = 1, a2 = 3, a3 = 8, a4 = 20, a5 = 43, a6 = 81, a7 = 138, . . .

is an arithmetic progression of the third order. It can be interpreted as a sequence

of the values of the polynomial

P (n) =
1

6
(4n3 − 15n2 + 29n− 12)
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at integral points n = 1, 2, . . . , or as a linear differential equation (a recursive

sequence) of the fourth order:

a1 = 1, a2 = 3, a3 = 8, a4 = 20 a an+4 = 4an+3−6an+2+4an+1−an, n = 1.2. . . .

In addition, the sum of the first n members
∑n

t=1 at = S(n) is the value of the

polynomial

S(n) =
1

6
(n4 − 3n3 + 8n2).

This particular example illustrates the theory of the arithmetic progressions of

higher order that is the subject of this article. Its purpose is to bring back to life

one of the very interesting concepts of elementary mathematics that used to be an

integral part of the secondary school curricula. This topic provides an opportunity

to experiment and play with simple (but not entirely simple) relations among

numbers and contributes to a deeper understanding of elementary mathematics

and arithmetics. It provides an opportunity for the teachers to excite interests in

mathematics. The concluding remarks offer, in particular, a lot of possibilities,

both for teachers and students, to experiment and keep finding new relations

among concepts that could otherwise seem dull and tedious.

In the course of writing this article, I have realized that in order to reach a

full understanding of the arithmetic progressions, it is necessary to study them

within a wider family of general progressions. This explains those few remarks

included in the introductory section.

A section on the arithmetic series of higher order can be found in Weber’s

textbook [2] on pp. 50–53. Euler used in his Algebra [1], Section III, Chap-

ter V, the term “polygonal” numbers. In fact, these progressions of numbers

were already considered as very interesting by Pierre de Fermat in his notes on

Diophantus.

General progressions

Let Π be the set of all progressions a of real numbers.1 If a = (a1, a2, . . . ,

as, . . . ) = (as | 1 ≤ s), let us write ∆1,s = as, and define recursively the (infinite

square) matrix M(a) = (∆r,s)1≤r,s, where

∆r,s = ∆r−1,s+1 − ∆r−1,s for all 1 < r and 1 ≤ s. (1)

1All statements hold for progressions whose members are elements of an arbitrary infinite in-

tegral domain. However, in this article we shall concentrate mainly on progressions of integers.
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Denote the sequence (∆r,1 | 1 ≤ r) by b. Thus b = (br | 1 ≤ r) with br = ∆r,1;

let us remark that b1 = a1. Hence a is the first row and b the first column of the

matrix M(a). Here, it may be appropriate to note that the entries of M(a) are

related to the so-called forward and backward differences of a function.

Using the relation (1) we can derive readily that

∆r,s = ∆r+1,s−1 + ∆r,s−1 for all 1 ≤ r and 2 ≤ s. (2)

The relations (1) direct us to subtract horizontally, i.e. the rows of the matrix

M(a) represent the difference progressions (progressions of differences). The

columns of the matrix M(a) represent in view of prescriptions (2) cumulative

progressions (progressions of sums): we add vertically.

∆1,1=a1=b1 ∆1,2=a2 ∆1,3=a3 ∆1,4=a4 ∆1,5=a5 ∆1,6=a6
... ∆1,s=as

...

∆2,1=b2 ∆2,2 ∆2,3 ∆2,4 ∆2,5 ∆2,6
... ∆2,s

...

∆3,1=b3 ∆3,2 ∆3,3 ∆3,4 ∆3,5 ∆3,6
... ∆3,s

...

∆4,1=b4 ∆4,2 ∆4,3 ∆4,4 ∆4,5 ∆4,6
... ∆4,s

...

∆5,1=b5 ∆5,2 ∆5,3 ∆5,4 ∆5,5 ∆5,6
... ∆5,s

...

∆6,1=b6 ∆6,2 ∆6,3 ∆6,4 ∆6,5 ∆6,6
... ∆6,s

...

...
...

...
...

...
...

...

∆r,1=br ∆r,2 ∆r,3 ∆r,4 ∆r,5 ∆r,6
... ∆r,s

...

...
...

...
...

...
...

...
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In this matrix, we can easily enumerate the relations among the marked

entries. Using the relations (1), we get the equality

∆3,4 = ∆2,5 − ∆2,4 = ∆1,6 − ∆1,5 − (∆1,5 − ∆1,4) = ∆1,6 − 2∆1,5 + ∆1,4,

and using the relations (2)

∆3,4 = ∆4,3 + ∆3,3 = ∆5,2 + ∆4,2 + ∆4,2 + ∆3,2 =

= ∆6,1 + ∆5,1 + ∆5,1 + ∆4,1 + ∆5,1 + ∆4,1 + ∆4,1 + ∆3,1 =

= ∆6,1 + 3∆5,1 + 3∆4,1 + ∆3,1.
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These equalities are particular instances of the following important statement.

These are formulae that express the element at the position r, s by means of the

elements of the first row, or the first column.

Theorem 1. (a) For all 1 ≤ r, s,

∆r,s =

r−1
∑

k=0

(−1)k

(

r − 1

k

)

∆1,r+s−1−k, (3)

and thus

br =
r
∑

k=1

(−1)r−k

(

r − 1

k − 1

)

ak. (4)

(b) For all 1 ≤ r, s,

∆r,s =

s−1
∑

k=0

(

s − 1

k

)

∆r+s−1−k,1, (5)

and thus

as =

s
∑

k=1

(

s − 1

k − 1

)

bk. (6)

Proof. The equalities (4) and (6) are simple consequences of the equalities

(3) and (5); an interchange of order of the summands provides the result. They

show the way to express the elements of the first row of the matrix M(a) by

means of the elements of the first column and vice versa.

Since the proof of the equation (3) is similar to that of equation (5), we are

going to prove (5) alone, leaving the proof of the relation (3) to the reader.

We prove the equality (5) by induction on n = r + s. The formula is trivial

for n = 2. Let us assume its validity for all ∆i,j , where i + j < n. For r + s = n,

let us write ∆n−s,s. In this case, (5) is again trivial for s = 1. Now we proceed

by induction on s: Assuming that (5) holds for s we will show that (5) holds for

s + 1. Making use of the relation (2) and the induction hypothesis, we get

∆n−(s+1),s+1 = ∆n−s,s + ∆n−(s+1),s =

=

s−1
∑

k=0

(

s − 1

k

)

∆n−1−k,1 +

s
∑

k=1

(

s − 1

k − 1

)

∆n−1−k,1 =

= ∆n−1,1 +

s−1
∑

k=1

(

s

k

)

∆n−1−k,1 + ∆n−1−s,1 =

s
∑

k=0

(

s

k

)

∆n−1−k,1,

as required. �
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Let us also formulate a simple relation for the sequence s = (sn =
∑n

k=1 ak | 1 ≤ n) of the partial sums of the progression a.

Theorem 2. For all 1 ≤ n,

sn =

n
∑

s=1

as =

n
∑

k=1

(

n

k

)

bk. (7)

Proof. The equality (7) follows immediately by making use of the relation

(6) and by interchanging the summands:

sn =

n
∑

s=1

as =

n
∑

s=1

(

s
∑

k=1

(

s − 1

k − 1

)

bk

)

=

n
∑

k=1

(

n
∑

s=k

(

s − 1

k − 1

)

)

bk =

n
∑

k=1

(

n

k

)

bk.

Here, we have used only the well-known sum
(

k − 1

k − 1

)

+

(

k

k − 1

)

+

(

k + 1

k − 1

)

+ · · · +
(

n − 1

k − 1

)

=

(

n

k

)

.

�

Now, we are going to define two mappings ∆ : Π → Π and ∇ : Π → Π, i.e.

two transformations of the set of all progressions of real numbers:

If a = (as | 1 ≤ s) and b = (br | 1 ≤ r), then

∆(a) = b, where br are given by the relation (4) and

∇(b) = a, where ar are given by the relation (6).

Theorem 3. The mappings ∆ and ∇ are mutually inverse (and thus bijec-

tive) mappings of the set Π, i.e.

∆ ∇ = ∇ ∆ = IΠ,

where IΠ is the identity mapping of the set Π.

Proof. Let us prove that ∆ ∇ = IΠ. The proof that ∇ ∆ = IΠ is similar.

It follows from the above definitions that for ∆ ∇(b) = (c) = (ct | 1 ≤ t) one

gets

ct =

t
∑

k=1

(−1)t−k

(

t − 1

k − 1

) k
∑

l=1

(

k − 1

l − 1

)

bl =

t
∑

l=1

t
∑

k=l

(−1)t−k

(

t − 1

k − 1

)(

k − 1

l − 1

)

bl =

=
t
∑

l=1

(−1)t

(

t − 1

t − l

)

(

t
∑

k=l

(−1)k

(

t − l

k − l

)

)

bl,
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for
(

t − 1

k − 1

)(

k − 1

l − 1

)

=

(

t − 1

t − l

)(

t − l

k − l

)

.

Moreover,
t
∑

k=l

(−1)k

(

t − l

k − l

)

=

t−l
∑

p=0

(−1)p+l

(

t − l

p

)

;

this is equal to 0 for l < t and (−1)l for l = t. Therefore ct = (−1)2t
(

t−1
0

)

bt = bt,

and hence ∆ ∇(b) = b. �

Remark 1. Of course, using the matrix M(a) (i.e. using the relations (1) and

(2)) the proof of Theorem 3. follows right away. As we have seen, the important

part of the proof was the equality
r
∑

k=s

(−1)k

(

r

k

)(

k

s

)

= 0 for all s < r.

Now, it is only appropriate to illustrate some use of the mappings ∆ and ∇,

i.e. show the importance of the relations (4) and (6). By doing so, i.e. by choosing

a suitable progression a and application of the relation (6), we get interesting

expressions of the members as. For instance, the choice of the popular progression

of Fibonacci F = (Fs | 1 ≤ s), satisfying F1 = F2 = 1 and Fs+2 = Fs+1 + Fs,

results in the alternating Fibonacci progression ∆(F), and from there, by the

formula (6), to the following expression for the n-th Fibonacci number:

Fn = 1 +

n−1
∑

k=2

(−1)k

(

n − 1

k

)

Fk−1.

It is also easy to see that the ∆−image of a geometric progression is again a

geometric progression. In other words, the subset of all geometric progressions is

with respect to the mapping ∆ (and thus also with respect to the mapping ∇)

an invariant subset. Let us denote by g(a,q) the geometric progression whose first

term is a and whose common ratio is q, and formulate this fact explicitly.

Theorem 4. ∆(g(a,q)) = g(a,q−1), and thus ∇(g(a,q)) = g(a,q+1). This means

that the mappings ∆ and ∇ induce on the subset Π(q) ⊂ Π of all geometric

progressions bijective mappings.

A similar theorem can be formulated for the subset Π(p,q) ⊂ Π of all recursive

sequences a = (a1, a2; p, q), which satisfy an+2 = p an+1 + q an for all 1 ≤ n (to

recall the concept, see Definition 2 below in the text).
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Theorem 5. The mappings ∆ and ∇ induce a bijective transformation of

the subset Π(p,q):

∆(a1, a2; p, q) = (a1, a2 − a1; p − 2, p + q − 1), and thus

∇(a1, a2; p, q) = (a1, a1 + a2; p + 2, q − p − 1).

Now, denote by a(a,d) the arithmetic progression whose first term is a and

whose common difference is d. We can see immediately that b = ∆(a(a,a))

satisfies b1 = a, b2 = d and br = 0 for all r ≥ 3. This is the most simple example

of the main subject of this article.

In this connection, let us introduce a less trivial example. Consider the

progression a satisfying as =
(

n+s−1
k

)

. Write b = ∆(a). Then br =
(

n
k−r+1

)

for r ≤ k + 1 and br = 0 for r ≥ k + 2. Using the relation (6), we get

as =

s−1
∑

l=0

(

s − 1

l

)(

n

k − l

)

for s ≤ k + 1 and

as =

k
∑

l=0

(

s − 1

l

)(

n

k − l

)

for s > k + 1.

For instance, this means for k = 2 that for s > 3,

as =

(

s − 1

0

)(

n

2

)

+

(

s − 1

1

)(

n

1

)

+

(

s − 1

2

)(

n

0

)

,

and, as we shall see in the next section, as is the value of the polynomial

Pa(x) =
1

2
[x2 + (2n − 3)x + n2 − 3n + 2]

for x = s.

Arithmetic progressions of higher order

Finally, we are getting to the very subject of this article. In the preceeding

section, we have introduced an example of a progression a such that all members

of the progression b = ∆(a) were, from a certain index n0, zero, i.e. br = 0 for

all r ≥ n0. In view of the formula (2), this property is equivalent to ∆n0,s = 0 for

all 1 ≤ s, i.e. with the fact that the n0−th row (and all the following ones) of the

matrix M(a) are zero. This calls for the following definition.
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Definition 1. The progression a = (as | 1 ≤ s) is said to be an arithmetic

progression of higher order, if there exists r such that ∆r, s = 0 for all 1 ≤ s. The

least d such that ∆d+2,s = 0 for all 1 ≤ s is called the order of this arithmetic

progression.

Remark 2. Thus, in this terminology, the non-stationary arithmetic prog-

ressions, as we know them from elementary algebra, are arithmetic progressions

of order 1. The arithmetic progressions that satisfy as = c 6= 0 for all 1 ≤ s, are

the arithmetic progressions of order 0, while the zero progression is an arithmetic

progression of order −1 (or we may say that it does not have order).

The Fibonacci progression F = (Fs | 1 ≤ s) mentioned earlier, is not an arith-

metic progression. We can see easily that in the above scheme for this progression

the entries satisfy

∆1,s = ∆r,2r+s−2 for all 1 ≤ s, 1 ≤ r.

Moreover, no geometric progression g(a,q) with a 6= 0 and q 6= 1, is an arithmetic

progression. On the other hand, the progression pk = (as = sk | 1 ≤ s) is an

arithmetic progression of degree k for an arbitrary natural number k.

Remark 3. In keeping with the relation (2), a progression a is an arithmetic

progression of order d if and only if b = ∆(a) satisfies the condition

bd+1 6= 0 a br = 0 for all d + 2 ≤ r.

Hence, arithmetic progressions of higher order are just those progressions a for

which ∆(a) has only a finite number of non-zero terms.

Remark 4. In what follows, some equalities will contain symbols
(

x
k

)

. There-

fore, let us recall that the definition of the combinatorial numbers (binomial co-

efficients) can easily be extended for arbitrary numbers x (and natural numbers

k):
(

x

k

)

=
x(x − 1)(x − 2) . . . (x − k + 1)

k!

For instance,
(

π
2

)

is simply the real number π(π−1)
2 , viz. the value of the quadratic

polynomial (parabola) y = 1
2 (x − 1

2 )2 − 1
8 at the point x = π. It may be worthy

to recall at this point that our progressions do not have to be integral.
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Now, we are in position to formulate a few theorems, namely some conse-

quences of Theorem 1.

Theorem 6. To any arithmetic progression a = (as | 1 ≤ s) of order d there

correspond a unique polynomial Va(x) of degree d such that Va(s) = as and a

unique polynomial Sa(x) of degree d + 1 such that its absolute term is zero and

Sa(n) =
∑n

s=1 as.

Proof. Applying Theorem 1 and Theorem 2 (namely the equalities (6) and

(7)) one can see easily that

Va(x) =

d+1
∑

k=1

(

x − 1

k − 1

)

bk (8)

and

Sa(x) =

d+1
∑

k=1

(

x

k

)

bk. (9)

�

Equally easily one can foresee that every polynomial P (x) =
∑d

n=0 Anxn is

of the form Va(x) for a suitably chosen progression b = (br | 1 ≤ r ≤ d + 1). Let

us record this fact explicitly in the following form.

Theorem 7. Let P (x) =
∑d

n=0 Anxn be an arbitrary polynomial of degree

d (i.e. Ad 6= 0). Let M = (zm,r) be a (d + 1) × (d + 1) be a matrix defined by

means of the equalities

zm,r =

r−1
∑

k=0

(−1)k

(

r − 1

k

)

(r − k)m−1.

Let us write A = (A0, A1, . . . , Ad) and define B = (b1, b2, . . . , bd+1) by means of

B = AM.

Then the progressions a = (as = P (s) | 1 ≤ s) and b = (br | br = 0 pro d+2 ≤ r)

satisfy

b = ∆(a), and therefore also a = ∇(b).
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Proof. The following proof is very simple. By (3) or (4),

br =

r−1
∑

k=0

(−1)k

(

r − 1

k

)

br−k =

r−1
∑

k=0

(−1)k

(

r − 1

k

) n
∑

t=0

At(r − k)t =

=

n
∑

t=0

(

r−1
∑

k=0

(−1)k

(

r − 1

k

)

(r − k)t

)

At =

n
∑

t=0

Atzt+1,r.

�

Corollary 1. There is a bijective correspondence between the polynomials

and arithmetic progressions of higher order. To every polynomial P (x) of degree d

there corresponds the arithmetic progression aP = (as = P (s) | 1 ≤ s) of order d.

On the contrary, every arithmetic progression a of order d there corresponds

the polynomial (8) of degree d, where bk is the k−th member of the progression

b = ∆(a).

Remark 5. Employing the formula (9), it is possible as above, to establish

a one-to-one correspondence between the arithmetic progressions of order d and

the polynomials of degree d + 1 with zero absolute term. It may be appropriate

to present a general formulation of the above correspondence: Let I be an infinite

integral domain. Then the correspondence of Corollary is an isomorphism between

the additive group of all arithmetic progressions of higher order with terms from

the domain I and the additive group of all polynomials from the domain I [x].

Remark 6. Observe that the elements zm,r of the matrix M in Theorem 7.

are, up to a multiple, Sterling numbers S(m, r) of the second kind:

zm,r = (k − 1)! S(m, r).

Recall that S(m, r) is the number of possibilities how to divide a set of m elements

into r non-empty subsets. Hence, the form of the matrix M is for d = 7 as follows:

M =



























1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 3 2 0 0 0 0 0

1 7 12 6 0 0 0 0

1 15 50 60 24 0 0 0

1 31 180 390 360 120 0 0

1 63 602 2100 3360 2520 720 0

1 127 1932 10206 25200 31920 20160 5040


























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The following assertion indicates the fact that the set of all arithmetic pro-

gressions of higher order is very large.

Theorem 8. An arbitrary sequence of k numbers (as | 1 ≤ s ≤ k) can

be (uniquely) extended to an arithmetic progression a = (as | 1 ≤ s) of order

d ≤ k − 1.

Proof. The finite sequence (as | 1 ≤ s ≤ k) determines uniquely all ∆r,s for

r + s ≥ k + 1, and thus br = ∆r,1 for 1 ≤ r ≤ k, in particular. Set br = 0 for all

remaining r, i.e. k + 1 ≤ r and denote the resulting progression by b. Then the

progression a = ∇(b) is the requested extension. �

A full understanding of Theorem 8 (and Theorem 1) requires an introduction

of the concept of a linear recursive sequence depending on a finite number of

parameters.

Definition 2. A sequence a = (as | 1 ≤ s) is said to be a linear recursive

sequence of order h (depending on h parameters) if there are non-zero numbers

p1, p2, . . . , ph such that

an+h = p1an+h−1 + p2an+h−2 + · · · + phan =

h
∑

t=1

ptan+h−t for all 1 ≤ n.

Such a sequence will be denoted by a = (a1, a2, . . . , ah; p1, p2, . . . , ph).

Theorem 9. The arithmetic progressions a of order d are precisely the linear

recursive sequences of order d + 1 :

a = (a1, a2, . . . , ad+1; p1, p2, . . . , pd+1),

where pt = (−1)t−1

(

d + 1

t

)

for 1 ≤ t ≤ d + 1.

Proof. The requirement

an =

d+1
∑

t=1

(−1)t−1

(

d + 1

t

)

an−t for all d + 2 ≤ n

is just the equality (3) in Theorem 1 for r = d + 2 and s = n − d− 1. Indeed, by

the assumption, ∆d+2,s = 0 for all 1 ≤ s. �
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It may be useful to emphasize the bijective correspondences derived above.

The arithmetic progressions of order d can be identified with the polynomials

of degree d and also with specific recursive sequences of order d + 1. These

identifications, that is the respective bijective mappings, are the essence of Theo-

rem 6 and Theorem 9. Thus, for instance, the ordinary arithmetical progression

(i.e. a progression of order 1) a(a,d) is the recursive sequence (a, a + d; 2,−1)

and the respective polynomial is Pa(x) = dx + (a − d). Similarly, the arith-

metic progression of order 2 whose first three terms are (a1, a2, a3) is the recur-

sive sequence (a1, a2, a3; 3,−3, 1) and the corresponding polynomial is Pa(x) =
1
2 (a3 − 2a2 + a1)x

2 + 1
2 (−3a3 + 8a2 − 5a1)x + (a3 − 3a2 + 3a1).

Let us use this opportunity to introduce a concept that is “‘dual”’ to the

concept of an arithmetic progression, and that will merit further investigations.

While the arithmetic progressions (of first order) a are characterized by the fact

that the progression b = ∆(a) = (br | 1 ≤ r) satisfies br = 0 for all 3 ≤ r, let

us define progressions ∆(a) such that the progression a = (as | 1 ≤ s) satisfies

as = 0 for all 3 ≤ s, and let us do it in a general form.

Definition 3. A progression b is said to be an alternating arithmetic prog-

ression of order d if ∇(b) = a = (as | 1 ≤ s) satisfies as = 0 for all d + 2 ≤ s

and ad+1 6= 0.

A great deal of the above results on arithmetic progressions can be translated

into the terminology of the alternating arithmetic progressions. However, one

should be aware of the fact that some definite differences take place already for

the progressions of order 1. It is easy to derive for such progressions that

br = (−1)r[−b1 + (r − 1)(b1 + b2)]

and that the sum of the first n terms of such progressions is sn = t(b1 + b2) for

even n = 2t and sn = b1 − (t − 1)(b1 + b2) for odd n = 2t − 1. Let us add that

these progressions are the recursive sequences (b1, b2;−2,−1).

Illustrations

A typical example of the arithmetic progressions of higher order are the prog-

ressions of the k−th powers of natural numbers (k ≥ 1). If we consider progres-

sions over a number field (e.g. over real numbers) then the set of all arithmetic
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progressions form a vector space over that field and the subset of all progressions

of the k−th powers of natural numbers forms a basis of that space. It is due to

this fact that there is such a close relationship between these progressions and

the polynomials!

Considering, for example, the sum
∑n

s=1 s3, we get immediately from the

scheme

1 8 27 64 125

7 19 37 61

12 18 24

6 6

0

and from the formula (7) the equality

n
∑

s=1

s3 =

(

n

1

)

+ 7

(

n

2

)

+ 12

(

n

3

)

+ 6

(

n

4

)

=
n2(n + 1)2

4
.

In a similar way, dealing with the progression

1, 32, 243, 1024, 3125, 7776, 16807, . . .

we get successively ∆2,1 = 31, ∆3,1 = 180, ∆4,1 = 390, ∆5,1 = 360, ∆6,1 = 120

and ∆7,1 = 0, and hence

n
∑

s=1

s5 =

(

n

1

)

+ 31

(

n

2

)

+ 180

(

n

3

)

+ 390

(

n

4

)

+ 360

(

n

5

)

+ 120

(

n

6

)

.

If the progression a is defined by a polynomial Pa(x), then the value of the

corresponding polynomial Sa(x) for x = n yields the sum
∑n

t=1 Pa(t). So, for

example, given the polynomial Pa(x) = ax2 + bx + c, we can easily find that

∆1,1 = a + b + c, ∆2,1 = 3a + b and ∆3,1 = 2a; from here,

Sa(x) =
1

6
[2ax3 + 3(a + b)x2 + (a + 3b + 6c)x] =

∫

Pa(x)dx + Ca(x),

with the correcting polynomial

Ca(x) =
a

2
x2 + (

a

6
+

b

2
)x.
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If we choose a = 1, b = c = 0, we get a well-known formula

n
∑

s=1

s2 =
1

3
n3 +

1

2
n2 +

1

6
n =

n(n + 1)(2n + 1)

6
.

Similarly, for the progression a determined by the polynomial Pa(x) = ax3 +

bx2 + cx + d we get that

Sa(x) =

∫

Pa(X)dx + Ca(x),

where

Ca(x) =
a

2
x3 + (

a

4
+

b

2
)x2 + (

b

6
+

c

2
)x.

Now, we get for a = 1, b = c = d = 0, the formula

n
∑

s=1

s3 =
1

4
n4 +

1

2
n3 +

1

4
n2 =

n2(n + 1)2

4
.

Finally, we include also an illustration of Theorem 8. Let us determine the

arithmetic progression a = (as | 1 ≤ s) řádu ≤ 3 such that

a1 = 5, a2 = −1, a3 = 2, a4 = 0.

Using our scheme

5 −1 2 0 −21 −75 −176 −338

−6 3 −2 −21 −54 −101

9 −5 −19 −33

−14 −14 −14

0 0

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................

we get

Sa(x) = 5

(

x

1

)

− 6

(

x

2

)

+ 9

(

x

3

)

− 14

(

x

4

)

=
1

12
x(174− 167x + 60x2 − 7x3).

From here,

Pa(x) = as = Sa(x) − Sa(x − 1) = −1

6
(14x3 − 111x2 + 271x − 204),
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and thus a5 = −21, a6 = −75, a7 = −176, a8 = −338, a9 = −575, . . . . Of course,

the polynomial expressing the values as = Pa(s) can be obtained also making use

of Theorem 1, or directly applying Legrange interpolation.

The reader may like to check for him/herself that the progression of the three

terms
√

2,−10, 0 can be extended to an arithmetic progression of order 2 whose

general term is as = 1
2 [(20 +

√
2)s2 − (80 + 5

√
2)s + 60 + 6

√
2] and the sum of the

first n members Sa(n) = 1
6n[(20 +

√
2)n2 − (90 + 6

√
2)n + 70 + 11

√
2].
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