
“tmcs-menyhart” — 2011/11/20 — 19:12 — page 209 — #1

9/2 (2011), 209–224

Can a language be before

“the first programming language”?

László Menyhárt

Abstract. I would like to present a potential new language which can be before “the
first programming language”. We can use this to write down the algorithms and source
code can be generated from this. The keyword is XML. This can be used for describing
algorithms, easy to check the syntax and the semantic. Source code can be transformed
with XSLT. So the usage of this new language can help us to answer the question, which
is the best first programming language?

Key words and phrases: programming, XML, programming languages.

ZDM Subject Classification: P40, P50, U70.

1. Introduction

I have never entered into the discussion which is the best first programming

language. I would like to stay far now, too. But I would like to present a new

approach to construe this problem.

There is a potential language which is good for writing down algorithms.

This article can be found on the following URL:

http://xml.inf.elte.hu/articles/TMCS_2011_AML/

2. Today’s programming languages

In the present we have a lot of programming languages and environments.

These can be categorized based on the language, users, target and characteristics.

For example there are languages with graphical appearance which is good for

Copyright c© 2011 by University of Debrecen

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 210 — #2

210 László Menyhárt

children to create games. Or there are some environments with simple text editor,

but there are with graphical interface. At last but not at least there are the

professional languages for using in the “business”. There are a lot of new products

for helping the children’s learning of programming. For example scratch is a new

developing.

3. Algorithm Markup Language (AML)

I would like to present a new approach to define algorithms. In my opinion it

won’t be good for the beginners and for the children but it might be good for those

students who can create games and who would like to teach profession languages.

It can help to understand the structural of the programming languages. This

method is not so spread, but its usage is going up. A lot of meta-programming

language uses it. For example similar XML file format is in background of BPEL

in SUN implementation, o:XML or MetaL.

3.1. Properties of AML

The XML – eXtensible Markup Language – provides a lot of possibility. We

can check easy the well-formed files. XSD – XML Schema Definition – can define

the syntax and the data types of values. There are applications which can validate

an XML file based on an XSD. XSL – eXtensible Stylesheet Language – can help

us to transform the source to a lot of format. So we can transform to other source

codes and any other text files.

Now I would like to show the proof of this concept (POC) with the following

example. Let’s see the algorithm of linear seeking.

linearSeeking.xml:

<?xml version="1.0" encoding="ISO-8859-2"?>

<procedure name=“linearSeeking”

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=“aml en.xsd”>

<parameters>

<parameter type=“TIndex” mode=“constant”>N</parameter>

<parameter type="TArray" mode="constant">arr</parameter>

<parameter type="TBoolean" mode="variable">exist</parameter>

<parameter type="TIndex" mode="variable">Which</parameter>

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 211 — #3

Can a language be before “the first programming language”? 211

</parameters>

<variables>

<variable type=”TIndex”>ind</variable>

</variables>

<sequence>

<operation>

<variable>ind</variable>

<expression>

<value>0</value>

</expression>

</operation>

<while>

<condition>

<and>

<expression>

<value>ind<N</value>

</expression>

<expression>

<not >

<function name=”T”>

<parameters >

<parameter>arr[ind]</parameter>

</parameters>

</function>

</not>

</expression>

</and>

</condition >

<sequence>

<operation>

<variable>ind</variable >

<expression >

<value>ind+1</value >

</expression >

</operation>

</sequence>

</while>

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 212 — #4

212 László Menyhárt

<operation>

<variable>exist</variable>

<expression >

<value >ind<N </value >

</expression >

</operation >

<if >

<condition >

<expression >

<value >exist </value >

</expression >

</condition >

<then>

<operation >

<variable >Which</variable>

<expression >

<value>ind</value>

</expression>

</operation >

</then>

<else/>

</if >

</sequence>

</procedure>

There is a procedure named “linearSeeking”. This procedure is called with more

parameters. For example there is a parameter named “N” with TIndex type and

constant mode. There are more variables. For example the type of “ind” variable

is TIndex. There are a lot of commands in sequence. The first is an operation;

the value of “ind” will be 0. The next command is a while with a condition and

a sequence of commands. And so on.

This code can be understood simpler with the next figures.

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 213 — #5

Can a language be before “the first programming language”? 213

Figure 1. Procedure contains parameters, variables and sequence

Figure 2. Each node contains other nodes

“Parameters” node contains more “parameter” nodes. “Variables” node con-

tains more “variable” nodes. “Sequence” node contains more nodes.

A parameter has a name and two properties. The “type” attributes defines

the type of the variable. “Mode” attribute defines how is the given parameter

handled in the procedure. The value can be modified or not.

A variable has a name and “type” attribute as the parameter.

There are four command in the sequence.

• The operation has a variable (left side) and an expression (right side) which

contains only a “0” value now.

• The “while” node stands two parts. The first is the “condition”, the second

is another sequence which is run more times.

• There is an operation again.

• The “if” is the last one. It stands three parts. The first is the “condition”

again; the second is the “then” node, which is a sequence, too. Because it

is that part of this node which runs when the result of the condition is true.

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 214 — #6

214 László Menyhárt

Figure 3. Expanded values

The third part is the “else” node, which runs at false result of the condition

and it is a sequence too.

The whole algorithm can be expanded and understood here.

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 215 — #7

Can a language be before “the first programming language”? 215

Figure 4. The whole algorithm

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 216 — #8

216 László Menyhárt

3.2. Schema definition

A part of the syntax can be check on an Internet Explorer or any other

browser application. These can check the well-formedness property.

XSD can define structure of the commands.

For example: “if” contains three parts: a “condition”, a “then” and a “else”.

I began to write the definition XSD. Now it is the following:

A part of aml en.xsd:

<?xml version="1.0" encoding="ISO-8859-2"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<!−−Simple Types −−>

<!−−Complext Types −−>

<xs:complexType name="TAnd" >

<xs:sequence >

<xs:element ref="expression" minOccurs="2" maxOccurs="2"/ >

</xs:sequence >

</xs:complexType >

. . .

<xs:complexType name="TProcedure" >

<xs:sequence >

<xs:element ref="parameters" >

<xs:element ref="variables"/ >

<xs:element ref="sequence"/ >

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType >

<xs:complexType name="TSequence" >

<xs:choice minOccurs="0" maxOccurs="unbounded" >

<xs:element ref="operation"/ >

<xs:element ref="while"/ >

<xs:element ref="if"/ >

</xs:choice >

</xs:complexType >

. . .

<!−−Elements −−>

<xs:element name="procedure" type="TProcedure"/ >

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 217 — #9

Can a language be before “the first programming language”? 217

. . .

</xs:schema >

An XSD schema is also an XML document. So it can be handled easily. It

can be understood simpler with the next figures:

Figure 5. Types in the XSD

Figure 6 shows the possible structure and types of nodes. In the sequence

each node can be chosen in any order and any times. There can be missed more

commands for example the “for”. But it was enough for the POC to show the

functioning.

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 218 — #10

218 László Menyhárt

This schema can help the editor. There are XML editor applications which

offer the possible identifiers in the given part of the file. For example in NetBeans

IDE the following picture can be seen in the native (now in Hungarian) language:

At first I run a validation which result was that there is a missing field. When

I started to add the new field and I hit the “<” character the editor offered the

possible fields and presented a native language description.

3.3. Transformation to other formats

Any transformation can be defined with an XSL file. So if we have a good

XSL file we can use it on more AML files. But each XSL stylesheet can produce a

specific format. If we would like to transform to more format we need more XSL

file. I prepared more transformation.

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 219 — #11

Can a language be before “the first programming language”? 219

Figure 6. Direction of transformations

If students cannot speak English they can use their native language in AML.

Transform between the AML and the own national AML is possible. I created the

transform to Hungarian and back to English language. I have to note that now

only the limited commands can be transformed. Transform en2hu.xlst file can be

used for transforming AML to the Hungarian AML. Transform hu2en.xlst file can

be used for transforming Hungarian AML to the English AML. Some word should

be translate in the sources. That is why a dictionary is needed. dictionary.xml is

available for these few words in the POC.

Generated Hungarian AML is this:

<?xml version="1.0" encoding="ISO-8859-2"? >

<eljaras nev=”linearSeeking” >

<parameterek >

<parameter tipus=”TIndex” mod=”konstans”>N </parameter >

<parameter tipus="TArray" mod="konstans">arr</parameter >

<parameter tipus="TBoolean" mod="változó">exist</parameter >

<parameter tipus="TIndex" mod="változó">Which</parameter >

</parameterek >

<valtozok >

<valtozo tipus=”TIndex” >ind</valtozo >

</valtozok >

<utasitasok >

<ertekadas >

<valtozo >ind </valtozo >

<kifejezes >

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 220 — #12

220 László Menyhárt

<ertek >0 </ertek >

</kifejezes >

</ertekadas >

<eloltesztelos-ciklus >

<feltetel >

<es >

<kifejezes >

<ertek>ind<N</ertek >

</kifejezes >

<kifejezes >

<nem >

<fuggveny nev=“T” >

<parameterek >

<parameter>arr[ind]</parameter >

</parameterek>

</fuggveny >

</nem >

</kifejezes>

</es >

</feltetel >

<utasitasok >

<ertekadas >

<valtozo >ind </valtozo >

<kifejezes >

<ertek >ind+1 </ertek >

</kifejezes >

</ertekadas >

</utasitasok >

</eloltesztelos-ciklus >

<ertekadas >

<valtozo >exist </valtozo >

<kifejezes >

<ertek >ind<N </ertek >

</kifejezes >

</ertekadas >

<ha >

<feltetel >

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 221 — #13

Can a language be before “the first programming language”? 221

<kifejezes >

<ertek>exist</ertek>

</kifejezes >

</feltetel >

<akkor >

<ertekadas >

<valtozo >Which </valtozo >

<kifejezes >

<ertek >ind </ertek >

</kifejezes >

</ertekadas >

</akkor >

<kulonben/ >

</ha>

</utasitasok >

</eljaras >

In our native language we use the pseudo codes. Pseudo code can be generated

from our native language AML with transform hu2pseudo.xslt.

Generated pseudo code is the next:
eljárás linearSeeking(konstans N:TIndex; konstans arr:TArray;

változó exist:TBoolean; változó Which:TIndex);

változók

ind:TIndex;

ind:=(0);

ciklus amı́g ((ind <N) és (nem T(arr[ind])))

ind:=(ind+1);

ciklus vége;

exist:=(ind <N);

ha ((exist)) akkor

Which:=(ind);

különben

elágazás vége;

eljárás vége;

With same method source code of other programming languages can be generated
by XSLT.

Transform en2pas.xslt generate the source code of Pascal:
Procedure linearSeeking(const N:TIndex; const arr:TArray; var

exist:TBoolean; var Which:TIndex);

var

ind:TIndex;

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 222 — #14

222 László Menyhárt

begin

ind:=(0);

while ((ind<N) and (not T(arr[ind]))) do begin

ind:=(ind+1);

end;

exist:=(ind<N);

if ((exist)) then begin

Which:=(ind);

end

else begin

end;

end;

Transform en2cpp.xslt generates the source code of C++:
void linearSeeking(TIndex N, TArray arr, TBoolean & exist,

TIndex & Which){

TIndex ind;

ind=(0);

while ((ind<N) && (!T(arr[ind]))) {
ind=(ind+1);

}
exist=(ind<N);

if ((exist)) {
Which=(ind);

} else {

}

}

These source codes can be copied to a part of the source code of a real program.
The following frame is good for testing the C++ source (main.cpp; project: frame):

#include <iostream>

using namespace std;

const int MaxN=100;

typedef int TIndex;

typedef bool TBoolean;

typedef int TArray[MaxN] ;

bool T(int a) {
return (a<5);

}

// GENERATED - START
// COPY HERE THE SOURCE!

// GENERATED CODE - END

int main()

{

TIndex N=3;

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 223 — #15

Can a language be before “the first programming language”? 223

TArray tomb=6,3,9;

TBoolean b;

TIndex ind;

//CALL GENERATED CODE - START
linearSeeking(N,tomb,b,ind);

//CALL GENERATED CODE - END

if (b) {
cout<<"OK"<< endl;

cout<<"index :"<< ++ind;

} else {
cout<<"NO";

}
return 0;

}

At last I would like to present that stuctogram can be generated too. This graphical
appearance of algorithms can be drawn in browsers by SVG. SVG is an XML file, too.
So it can be generated by XSLT.

Figure 7. transform en2struct svg.xslt generates the source of this

4. Conclusion

This new language can be used for learning the structural programming languages.
It helps to understand the parts of the command. It can help to check its syntax. It
can generate other source codes and additional files. But this XML files implies much
other information apart from the important data. So we should write a lot. There
are applications, for example XMLSPY, that have code supplement and can check the
syntax at the time of editing. It might be the best if there might be an application in
which we can drag and drop our procedures on graphical interface.

“tmcs-menyhart” — 2011/11/20 — 19:12 — page 224 — #16

224 László Menyhárt : Can a language be before “the first programming language”?

References

[1] P. Szlávi and L. Zsakó, µlógia 18, Módszeres programozás: Programozási bevezető,
2002.

[2] P. Szlávi and L. Zsakó, µlógia 19, Módszeres programozás: Programozási tételek,
2002.

[3] World Wide Web Consortium, 1994–2009, http://www.w3.org/.

[4] W3Schools Online Web Tutorials, 1999–2009, http://www.w3schools.com/.

[5] Scratch Magyarország Portál, Budapest, 2007–2009, http://scratch.inf.elte.hu/.

LÁSZLÓ MENYHÁRT

ELTE IK

BUDAPEST

HUNGARY

E-mail: menyhart@elte.hu

(Received November, 2010)

