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The sum of the same powers of the

first n positive integers and the

Bernoulli numbers

István Molnár

Abstract. The first part of this paper presents a method to calculate the sum of the
same powers of the first n positive integers which is non-recursive and easy to express
algorithmically. The application is demonstrated through several problems, for example
by calculating the sum of arithmetic progression of degree p. The second part of the
paper shows that the discussed procedure can also be used to calculate the Bernoulli
numbers, and then, with the help of a known theorem, a link is established between the
sum of the same powers of the first n positive integers and the Bernoulli numbers.
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Introduction

The calculation of the sum of the same powers of the first n positive integers

is an interesting and illuminating problem. Below we present a method to do this.

The sums in question are calculated with the help of determinants and Cramer’s

rule, which is a theorem used for linear equations. Even in secondary schools this

method – of course first of all in specialized classes and in study groups – may be

presented and discussed, depending upon the level of the pupils. Let

Sp = 1p + 2p + 3p + . . . + np =

n
∑

i=1

ip
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where n is a positive integer and p = 0, 1, 2, . . . .

It is easy to calculate S0 since obviously S0 = n.

Our objective is to find a relatively easy-to-use formula for Sp.

There are different ways to do this, namely:

1) Using Newton’s binomial theorem.

Most books and journal articles rely on this method (see, e.g. [1] and

[5]). To use this method combinatorial tools are needed (ways to calculate

combinations, Newton’s binomial theorem).

With this method we describe the (p+1)th power of (a+1) using Newton’s

binomial theorem. Then, rearranging the result, we get an identity in which

we substitute in turns the natural numbers 1, 2, . . . , n. Adding the terms of

the relations that we get this way and reducing the terms of the same nature,

we will get a recursive formula. This recursion defines Sp as the function of

the previous sums S1, S2, . . . , Sp−1.

2) Applying other identities.

Just as with the previous method, combinatorial tools are needed here

also. To find the recursive pattern we start with unravelling the formula

(x + 1)xp − x(x − 1)p (see, e.g. [3]). By substituting in turns the numbers 1,

2, . . . , n into the identity that we get, and then summing up the results term

by term, we will get the recursive formula defining Sp.

3) Using a matrix.

For this method no combinatorial knowledge or tools are needed. Basic

knowledge of matrix arithmetic will help, but there is no essential need for

this; instead of the word ‘matrix’ we can even use the expression ‘table’.

We start from the following matrix:

M =















1p−1 2p−1 3p−1 . . . np−1

1p−1 2p−1 3p−1 . . . np−1

1p−1 2p−1 3p−1 . . . np−1

−−− −−− −−− − −−−

1p−1 2p−1 3p−1 . . . np−1















.

The essence of this method is that we sum up the elements of the given matrix

in different groupings and thus we get the recursion needed. First we sum up

the elements of M line by line. Then the summing is done with the help of

the upper and lower triangular matrices, and the diagonal matrix assigned

to M .
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In all these three methods described above we eventually establish a recursive

formula. This is precisely the drawback of each of these procedures: because the

calculation of a given Sp is always done by using the results of S1, S2, . . . , Sp−1,

and, quite obviously, these results must be calculated beforehand.

However, in the case of the fourth procedure, presented below, there is no

need to find previous sums in order to get to the next sum. That is, there is no

need to draw up a recursive pattern.

A non-recursive method to calculate Sp

Let k be a natural number and a be an arbitrary real number. Start from

the identity

(a + 1)k+1 =

(

k + 1

0

)

· ak+1 +

(

k + 1

1

)

· ak +

(

k + 1

2

)

· ak−1 + . . .+

+

(

k + 1

k − 1

)

· a2 +

(

k + 1

k

)

· a +

(

k + 1

k + 1

)

from which we get

(a + 1)k+1 − ak+1 =

(

k + 1

1

)

· ak +

(

k + 1

2

)

· ak−1 + . . . +

+

(

k + 1

k − 1

)

· a2 +

(

k + 1

k

)

· a +

(

k + 1

k + 1

)

. (1)

In this equation (1) substitute a in turns with the natural numbers 1, 2, . . . , n,

and sum up the results.

Now

n
∑

i=1

[

(i + 1)k+1 − ik+1
]

=

n
∑

i=1

[(

k + 1

1

)

· ik +

(

k + 1

2

)

· ik−1 + . . .+

+

(

k + 1

k − 1

)

· i2 +

(

k + 1

k

)

· i +

(

k + 1

k + 1

)]

=

=

(

k + 1

1

)

·

n
∑

i=1

ik +

(

k + 1

2

)

·

n
∑

i=1

ik−1 + . . . +

+

(

k + 1

k − 1

)

·

n
∑

i=1

i2 +

(

k + 1

k

)

·

n
∑

i=1

i +

(

k + 1

k + 1

)

·

n
∑

i=1

1.
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On the left side we have a telescopic sum which after elimination results in

(n + 1)k+1 − 1k+1. That is,

(n + 1)k+1 − 1 =

(

k + 1

1

)

· Sk +

(

k + 1

2

)

· Sk−1 + . . . +

+

(

k + 1

k − 1

)

· S2 +

(

k + 1

k

)

· S1 +

(

k + 1

k + 1

)

· n.

Rearrange it to get

(n + 1)k+1 =

(

k + 1

k + 1

)

· (n + 1) +

(

k + 1

k

)

· S1 +

(

k + 1

k − 1

)

· S2 + . . .+

+

(

k + 1

2

)

· Sk−1 +

(

k + 1

1

)

· Sk. (2)

Let X0 = n + 1.

Assign to relation (2) a linear system of equations that we get by giving k in

turns the values 0, 1, 2, . . . , p. Thus we will have this system of equations:











































































n + 1 =

(

1

1

)

· X0

(n + 1)2 =

(

2

2

)

· X0 +

(

2

1

)

· S1

(n + 1)3 =

(

3

3

)

· X0 +

(

3

2

)

· S1 +

(

3

1

)

· S2

−−−−−−−−−−−−−−−−−−−−−−−

(n + 1)p+1 =

(

p + 1

p + 1

)

· X0 +

(

p + 1

p

)

· S1 +

(

p + 1

p − 1

)

· S2 + . . . +

+

(

p + 1

2

)

· Sp−1 +

(

p + 1

1

)

· Sp

(3)

This is a linear system of equations consisting of (p + 1) equations with (p + 1)

unknowns (X0, S1, S2, . . . , Sp). X0 is considered unknown only because in this

way is it ‘simpler’ to draw up the equation system, and it is easier to find an

algorithm to solve it.
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The matrix derived from the system of equations is a lower triangle matrix,

the determinant of which is:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 . . . 0
(

2

2

) (

2

1

)

0 . . . 0
(

3

3

) (

3

2

) (

3

1

)

. . . 0

−−− −−− −−− − −−−
(

p + 1

p + 1

) (

p + 1

p

) (

p + 1

p − 1

)

. . .

(

p + 1

1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

(

1

1

)

·

(

2

1

)

·

(

3

1

)

· . . . ·

(

p + 1

1

)

= (p + 1)!.

Since D = (p + 1)! 6= 0, Cramer’s rule can be applied. We will get the determi-

nants for the corresponding unknowns if in D we substitute in turn the column

vectors with the column vectors of the free terms. Thus by calculating the right

determinant for each p, we will not only get Sp, but also the (X0, S1, S2, . . . , Sp−1)

sums whose index is lower than p.

It is also fairly obvious, however, that if we calculate only Sp for each p time

after time, then we will get this result even if we do not know the other sums.

This shows the greatest advantage of this method compared to other methods,

because here to calculate Sp we do not have to know the sums S1, S2, . . . , Sp−1,

i.e., we do not need to draw up a recursive formula.

The determinant of Sp is:

Dp =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 . . . (n + 1)
(

2

2

) (

2

1

)

0 . . . (n + 1)2

(

3

3

) (

3

2

) (

3

1

)

. . . (n + 1)3

−−− −−− −−− − −−−
(

p + 1

p + 1

) (

p + 1

p

) (

p + 1

p − 1

)

. . . (n + 1)p+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From Cramer’s rule it follows:

Sp =
Dp

D
=

1

(p + 1)!
· Dp, (4)

where p = 1, 2, 3, . . . (we are not concerned with calculating X0).
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Applying the relation to some p values

Here are the results for some actual p values.

If p = 2, then

S2 =
1

3!
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 n + 1
(

2

2

) (

2

1

)

(n + 1)2

(

3

3

) (

3

2

)

(n + 1)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n + 1

6
·

∣

∣

∣

∣

∣

∣

1 0 1

1 2 n + 1

1 3 (n + 1)2

∣

∣

∣

∣

∣

∣

=

=
n + 1

6
·

∣

∣

∣

∣

∣

∣

1 0 1

0 2 n

0 1 n(n + 1)

∣

∣

∣

∣

∣

∣

=
n + 1

6
·

∣

∣

∣

∣

2 n

1 n(n + 1)

∣

∣

∣

∣

=

=
n(n + 1)

6
·

∣

∣

∣

∣

2 1

1 n + 1

∣

∣

∣

∣

=
n(n + 1)

6
· (2n + 2 − 1) =

n(n + 1)(2n + 1)

6
.

So

S2 = 12 + 22 + 32 + . . . + n2 =
n(n + 1)(2n + 1)

6
.

If p = 3, then

S3 =
1

4!
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 n + 1
(

2

2

) (

2

1

)

0 (n + 1)2

(

3

3

) (

3

2

) (

3

1

)

(n + 1)3

(

4

4

) (

4

3

) (

4

2

)

(n + 1)4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n + 1

24
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1

1 2 0 n + 1

1 3 3 (n + 1)2

1 4 6 (n + 1)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=
n + 1

24
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1

0 2 0 n

0 1 3 (n + 1)

0 1 3 n(n + 1)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n + 1

24
·

∣

∣

∣

∣

∣

∣

2 0 n

1 3 n(n + 1)

1 3 n(n + 1)2

∣

∣

∣

∣

∣

∣

=

=
n(n + 1)

8
·

∣

∣

∣

∣

∣

∣

2 0 1

1 1 n + 1

1 1 (n + 1)2

∣

∣

∣

∣

∣

∣

=
n(n + 1)

8
·

∣

∣

∣

∣

∣

∣

2 0 1

1 1 n + 1

0 0 n(n + 1)

∣

∣

∣

∣

∣

∣

=
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=
n(n + 1)

8
·

∣

∣

∣

∣

2 1

0 n(n + 1)

∣

∣

∣

∣

=
n(n + 1)

8
· [2n(n + 1) − 0] =

n2(n + 1)2

4
.

So

S3 = 13 + 23 + 33 + . . . + n3 =
n2(n + 1)2

4
.

These are beyond the syllabuses of ordinary secondary school classes, but – in

our experience – they can be taught without reservation in specialized ones (both

the mathematics and the method). Depending on the general level of knowledge

of the students in the higher years and in study groups, the information about

the determinants, Cramer’s rule, and the described method can all be presented

with ease because these students have by this time acquired the necessary com-

binatorial skills. Although higher exponents require long calculations along the

process, students can perform these without much difficulty after gaining sufficient

familiarity with the method.

The generalisation of the method for arithmetic progression

In the next part we shall see what happens when we work with the consecutive

terms of any arithmetic progression.

Take an arithmetic progression with first term a and difference d (a, d ∈ R).

Let us examine what we can say about the sum of the pth powers of the first n

terms of the progression, that is, about the sum of the consecutive terms of an

arithmetic progression of degree p. Let

Sp(a, d) = a
p
1 + a

p
2 + a

p
3 + . . . + ap

n =

n
∑

i=1

a
p
i =

n
∑

i=1

[a + (i − 1) · d]p,

where p = 0, 1, 2, . . . .

We are again not concerned with calculating S0(a, d), because very obviously

S0(a, d) = n. Neither does the case need attention when d = 0, that is when the

progression is constant, because then Sp(a, 0) = n · a
p
1 = n · ap.

So let d 6= 0.

The procedure to calculate Sp(a, d) is identical with the one that has been

introduced above. Start from the identity

ak+1

i+1 − ak+1

i =

(

k + 1

1

)

· ak
i · d +

(

k + 1

2

)

· ak−1

i · d2 + . . . +

+

(

k + 1

k

)

· a1
i · d

k +

(

k + 1

k + 1

)

· dk+1, (5)
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where i = 1, 2, . . . , n and k is an arbitrary natural number.

Substituting i in turns with the values 1, 2, . . . , n, and then summing up the

results and making the necessary calculations, we get

(a + nd)k+1 − ak+1 = d ·

(

k + 1

1

)

· Sk(a, d) + . . .+

+ dk ·

(

k + 1

k

)

· S1(a, d) + dk+1 ·

(

k + 1

k + 1

)

· S0(a, d).

Rearrange it

(a + nd)k+1 − ak+1 =

(

k + 1

k + 1

)

· S0(a, d) · dk+1 +

(

k + 1

k

)

· S1(a, d) · dk + . . . +

+

(

k + 1

1

)

· Sk(a, d) · d. (6)

Assign to relation (6) a linear system of equations generated by giving k in turn

the values 0, 1, 2, . . . , p. Thus we will get the following system of equations:



























































































(a + nd)1 − a1 =

(

1

1

)

· S0(a, d) · d

(a + nd)2 − a2 =

(

2

2

)

· S0(a, d) · d2 +

(

2

1

)

· S1(a, d) · d

(a + nd)3 − a3 =

(

3

3

)

· S0(a, d) · d3 +

(

3

2

)

· S1(a, d) · d2+

+

(

3

1

)

· S2(a, d) · d

−−−−−−−−−−−−−−−−−−−−−−−−

(a + nd)p+1 − ap+1 =

(

p + 1

p + 1

)

· S0(a, d) · dp+1+

+

(

p + 1

p

)

· S1(a, d) · dp + . . . +

(

p + 1

1

)

· Sp(a, d) · d

(7)

This is a linear system of equations consisting of (p + 1) equations with (p +

1) unknowns (S0(a, d), S1(a, d), S2(a, d), . . . , Sp(a, d)). The determinant of the
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matrix belonging to the system of equations is:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

· d 0 0 . . . 0
(

2

2

)

· d2

(

2

1

)

· d 0 . . . 0
(

3

3

)

· d3

(

3

2

)

· d2

(

3

1

)

· d . . . 0

−−− −−− −−− − −−−
(

p + 1

p + 1

)

· dp+1

(

p + 1

p

)

· dp

(

p + 1

p − 1

)

· dp−1 . . .

(

p + 1

1

)

· d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

(

1

1

)

· d ·

(

2

1

)

· d ·

(

3

1

)

· d · . . . ·

(

p + 1

1

)

· d = (p + 1)! · dp+1.

Since D = (p + 1)! · dp+1 6= 0, Cramer’s rule can be applied.

The determinant for Sp(a, d) is:

D′

p =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

· d 0 0 . . . (a + nd)1 − a1

(

2

2

)

· d2

(

2

1

)

· d 0 . . . (a + nd)2 − a2

(

3

3

)

· d3

(

3

2

)

· d2

(

3

1

)

· d . . . (a + nd)3 − a3

−−− −−− −−− − −−−
(

p + 1

p + 1

)

· dp+1

(

p + 1

p

)

· dp

(

p + 1

p − 1

)

· dp−1 . . . (a +nd)p+1−ap+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From Cramer’s rule it follows:

Sp(a, d) =
D′

p

D
=

1

(p + 1)! · dp+1
· D′

p,

where p = 1, 2, 3, . . . .

Example

If p = 2, then

D′

2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

· d 0 (a + nd)1 − a1

(

2

2

)

· d2

(

2

1

)

· d (a + nd)2 − a2

(

3

3

)

· d3

(

3

2

)

· d2 (a + nd)3 − a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

d 0 nd

d2 2d 2and + (nd)2

d3 3d2 3a2nd + 3a(nd)2 + (nd)3

∣

∣

∣

∣

∣

∣

∣

∣

=
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= d ·d · nd ·

∣

∣

∣

∣

∣

∣

1 0 1
d 2 2a + nd

d2 3d 3a2 + 3and + (nd)2

∣

∣

∣

∣

∣

∣

= nd3
·

∣

∣

∣

∣

∣

∣

1 0 0
d 2 2a + (n − 1)d
d2 3d 3a2 + 3and + (n2

− 1)d2

∣

∣

∣

∣

∣

∣

=

= nd3

∣

∣

∣

∣

2 2a + (n − 1)d

3d 3a2 + 3and + (n2 − 1)d2

∣

∣

∣

∣

=

= nd3
[

6a2 + 6and + 2(n2 − 1)d2 − 6ad − 3(n − 1)d2
]

=

= nd3 ·
[

2n2d2 + 3nd(2a − d) + 6a2 − 6ad + d2
]

.

From which

S2(a, d) =
D′

2

D
=

1

3! · d3
· nd3 · [2n2d2 + 3nd(2a − d) + 6a2 − 6ad + d2].

So

S2(a, d) =
n

6
· [2n2d2 + 3nd(2a − d) + 6a2 − 6ad + d2].

Special cases:

a = 1, d = 1

S2(1, 1) = 12 + 22 + 32 + . . . + n2 =
n

6
· (2n2 + 3n + 1) =

n(n + 1)(2n + 1)

6
.

a = 1, d = 2

S2(1, 2) = 12 + 32 + 52 + . . . + (2n − 1)2 =
n

6
· (8n2 − 2) =

n(4n2 − 1)

3
.

a = 1, d = 3

S2(1, 3) = 12 +42 +72 + . . .+(3n−2)2 =
n

6
· (18n2 −9n−3) =

n

2
· (6n2 −3n−1).

a = 3, d = 4

S2(3, 4) = 32+72+112+. . .+(4n−1)2 =
n

6
·(32n2+24n−2) =

n

3
·(16n2+12n−1).

Generalization for arithmetical progression can be one of the topics taught here,

though the calculations will stretch even longer (however they are quite reward-

ing). The examination of some special cases, on the other hand, can highlight a

number of interesting relations.

The Bernoulli numbers

Following the same train of thought the Bernoulli numbers can also be cal-

culated. In one interpretation the Bernoulli numbers are the coefficients of the
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Taylor expansion of the function x
ex−1

:

x

ex − 1
=

∞
∑

k=0

Bk

k!
· xk,

where Bk’s are the Bernoulli numbers (for more details see, e.g. [4]).

According to another interpretation (see, e.g. [7]), we will get the first

(p + 1) Bernoulli numbers (B0, B1, B2, . . . , Bp), if we solve the following system

of equations:











































































1 =

(

1

1

)

· B0

0 =

(

2

2

)

· B0 +

(

2

1

)

· B1

0 =

(

3

3

)

· B0 +

(

3

2

)

· B1 +

(

3

1

)

· B2

−−−−−−−−−−−−−−−−−

0 =

(

p + 1

p + 1

)

· B0 +

(

p + 1

p

)

· B1 +

(

p + 1

p − 1

)

· B2 + . . . +

+

(

p + 1

2

)

· Bp−1 +

(

p + 1

1

)

· Bp

(8)

The determinant of the matrix belonging to the system of equations (8) is:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 . . . 0
(

2

2

) (

2

1

)

0 . . . 0
(

3

3

) (

3

2

) (

3

1

)

. . . 0

−−− −−− −−− − −−−
(

p + 1

p + 1

) (

p + 1

p

) (

p + 1

p − 1

)

. . .

(

p + 1

1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

1

1

)

·

(

2

1

)

·

(

3

1

)

· . . . ·

(

p + 1

1

)

= (p + 1)!.

Since D = (p + 1)! 6= 0, Cramer’s rule can be applied.
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The determinant for Bp is:

D′′

p =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 . . . 1
(

2

2

) (

2

1

)

0 . . . 0
(

3

3

) (

3

2

) (

3

1

)

. . . 0

−−− −−− −−− − −−−
(

p + 1

p + 1

) (

p + 1

p

) (

p + 1

p − 1

)

. . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

So from Cramer’s rule it follows:

Bp =
D′′

p

D
=

1

(p + 1)!
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 . . . 1
(

2

2

) (

2

1

)

0 . . . 0
(

3

3

) (

3

2

) (

3

1

)

. . . 0

−−− −−− −−− − −−−
(

p + 1

p + 1

) (

p + 1

p

) (

p + 1

p − 1

)

. . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (9)

where p = 1, 2, 3, . . . (we are not concerned with calculating B0, because it im-

mediately follows from the first equation that B0 = 1).

Example

Calculate B4.

B4 =
1

5!
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

1

)

0 0 0 1
(

2

2

) (

2

1

)

0 0 0
(

3

3

) (

3

2

) (

3

1

)

0 0
(

4

4

) (

4

3

) (

4

2

) (

4

1

)

0
(

5

5

) (

5

4

) (

5

3

) (

5

2

)

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

120
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 0 0

1 3 3 0

1 4 6 4

1 5 10 10

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
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=
1

120
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 0 0

0 1 3 0

0 2 6 4

0 3 10 10

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

120
·

∣

∣

∣

∣

∣

∣

1 3 0

2 6 4

3 10 10

∣

∣

∣

∣

∣

∣

=
1

120
·

∣

∣

∣

∣

∣

∣

1 0 0

2 0 4

3 1 10

∣

∣

∣

∣

∣

∣

=

=
1

120
·

∣

∣

∣

∣

0 4

1 10

∣

∣

∣

∣

=
1

120
· (0 − 4) = −

1

30
.

The values of the first few Bernoulli numbers:

B0 = 1; B1 = −
1

2
; B2 =

1

6
; B3 = 0; B4 = −

1

30
; B5 = 0; B6 =

1

42
.

The next theorem links up the sum of the pth power of the first n positive integers

with the Bernoulli numbers.

Theorem (Jakob Bernoulli)

The sum of the pth (p ∈ Z
+) power of the first n positive integers can be

generated this way:

Sp =

n
∑

i=1

ip =
1

p + 1
·

p
∑

k=0

(

p + 1

k

)

· Bk · (n + 1)p+1−k. (10)

The proof of the theorem, which is based on the method of mathematical induc-

tion, can be found, for example, in [2].

Example

If p = 2, then

S2 =
1

3
·

2
∑

k=0

(

3

k

)

· Bk · (n + 1)3−k =

=
1

3
·

[(

3

0

)

· 1 · (n + 1)3 +

(

3

1

)

·

(

−
1

2

)

· (n + 1)2 +

(

3

2

)

·

(

1

6

)

· (n + 1)

]

=

=
n + 1

3
·

[

(n + 1)2 −
3

2
· (n + 1) +

1

2

]

=

=
n + 1

6
· (2n2 + 4n + 2 − 3n − 3 + 1) =

n + 1

6
· (2n2 + n) =

=
n(n + 1)(2n + 1)

6
.
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If p = 3, then

S3 =
1

4
·

3
∑

k=0

(

4

k

)

· Bk · (n + 1)4−k =

1

4
·

[(

4

0

)

· 1 · (n + 1)4 +

(

4

1

)

·

(

−
1

2

)

· (n + 1)3 +

(

4

2

)

·

(

1

6

)

· (n + 1)2 + 0

]

=

=
(n + 1)2

4
·
[

(n + 1)2 − 2(n + 1) + 1
]

=
(n + 1)2

4
· (n + 1 − 1)2 =

=
n2(n + 1)2

4
.

We want to note that in [6] there are nearly forty explicit formulas for calculating

Bernoulli numbers. With the help of these, from the above theorem, many non-

recursive formulas can be made to calculate the sum of the same powers of the

first n positive integers.

Summary

In this paper we approached the problem of calculating the sum of the same

powers with linear algebraic means. For this we first drew up a ‘suitable’ relation

and then assigned to it a linear system of equations. Solving the system of equa-

tions with Cramer’s rule, we obtained a closed formula for the sum Sp, which is

derived from the calculation of a determinant. The method could be generalized

for arithmetical progression as well. The use of a linear system of equations in

solving the problem also creates a link with the Bernoulli numbers. We have

shown that the method we presented can be applied to calculate Bernoulli num-

bers. We established a connection between the sum of the pth powers of the first

n positive integers and the Bernoulli numbers. The method presented here and

its applications – as can be seen – help to illustrate how ‘bridges’ may be built

between the different areas of mathematics, and pointing this out may also be an

important goal when teaching mathematics at a higher level, both in secondary

and in higher education.
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