
“tmcs-csenki” — 2011/5/13 — 21:47 — page 45 — #1

9/1 (2011), 45–75

Teaching Reliability Theory with the

Computer Algebra System Maxima

Attila Csenki

Abstract. The use of the Computer Algebra System Maxima as a teaching aid in an
MSc module in Reliability Theory is described here. Extracts from student handouts
are used to show how the ideas in Reliability Theory are developed and how they are
intertwined with their applications implemented in Maxima. Three themes from the
lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling,
(3) Laplace Transform Techniques.

It is argued that Maxima is a good tool for the task, since: it is fairly easy to
learn & use; it is well documented; it has extensive facilities; it is available for any
operating system; and, finally, it can be freely downloaded from the Web. Maxima

proves to be a useful tool even for Reliability research for certain tasks. This latter
feature provides a seamless link from teaching to research – an important feature in
postgraduate education.

Key words and phrases: reliability theory, computer algebra, Maxima, engineering ed-
ucation, mathematical education.

ZDM Subject Classification: M50, N80.

1. Introduction

The author has taught over successive years a one-semester module entitled

Reliability Modelling and Analysis (RMA) to MSc students. In this paper it

is described how the Computer Algebra System (CAS) Maxima is used in the

module as a teaching aid.

In the next section, Sect. 2, we describe the relevant MSc programmes and

how RMA forms part of it. We discuss the module structure, the prerequisites

Copyright c© 2011 by University of Debrecen

“tmcs-csenki” — 2011/5/13 — 21:47 — page 46 — #2

46 Attila Csenki

and give an account of how Maxima found its way into the module as a teaching

aid. Furthermore, we explain the reasons for adopting Maxima and consider a

brief summary of its attributes.

The main emphasis in the paper is on the student handouts, an edited version

of some of the pertinent parts of which is given in Appendix A. They show how

material in Reliability Theory can be combined with and illustrated by results

produced in Maxima. We concentrate in Appendix A on three themes : (a)

Approximations, (b) Markov Modelling, and, (c) Laplace Transforms. This will

be discussed in detail in Section 3. In the concluding section, Section 4, we reflect

on some possible future action.

2. Teaching Framework

2.1. Taught MSc Courses

2.1.1. Course Structures

Out of the nine taught MSc causes offered by our Department of Computer

Science and Applied Mathematics, RMA is an optional module which students on

the following two courses may choose,

(a) MSc in Mobile Computing (MC),

(b) MSc in Networks and Performance Engineering (NPE).

According to published material, these courses are for “graduates from science,

maths, computing, engineering and related degree programmes.” The postgradu-

ate courses relevant for these two groups of students are shown in Table 1. For an

MSc degree, students on these two courses have to accumulate 180 credits over

three semesters, 60 credits in each. The first two of these semesters fall into the

usual teaching and examination periods whereas the third one extends over the

summer months.

In Table 1, compulsory and optional modules are respectively indicated by a

tick (3) and a letter ‘o’. It is seen that RMA at the most amounts to one ninth

of the overall student effort.

2.1.2. Accreditation

The two MSc courses NPE and MC are approved for accreditation by the

British Computer Society (BCS). More precisely, they carry 30 academic points

towards membership in the BCS and exempt the successful candidate from taking

“tmcs-csenki” — 2011/5/13 — 21:47 — page 47 — #3

Teaching Reliability Theory with the Computer Algebra System Maxima 47

Table 1. Overview of the Postgraduate Courses NPE and MC for 2007/8.

Course
Module Title Semester Credit

NPE MC

Mobile Applications 1 20 – 3

Networks & Protocols 1 20 3 3

Performance Modelling & Telecommunications Systems 1 20 3 –

Software Development (Postgraduate) 1 20 3 –

Wireless Networks 1 20 – 3

Advanced Simulation Modelling 2 20 o 3

Artificial Intelligence with Applications 2 20 – o

Mobile Networks Performance Modelling 2 20 – 3

Real Time Systems (Postgraduate) 2 20 o o

Reliability Modelling & Analysis 2 20 o o

Software Performance Engineering Group Project 2 20 3 –

Dissertation 3 60 3 3

certain examinations with the BCS. After accreditation, the member becomes a

chartered engineer and a member of the BCS.

2.2. The Module RMA

2.2.1. The Module

In the module descriptor for RMA, computer skills are not specifically men-

tioned as a prerequisite but it may be assumed in the lectures, because of the

admissions policy, that students taking this module will have the requisite back-

ground in programming. Furthermore, as RMA is delivered in the second semes-

ter, NPE students will have been learnt programming (at the latest) in semester 1

in their Software Development module. In general, the MC students come with

good programming skills, some from Industry. (Some of the student on these two

courses are graduates from this University and will have been taught program-

ming in Java.)

RMA is designed to prepare students for solving reliability related problems

in their own fields of specialism. It is assumed that students have some prior

knowledge of Probability and Statistics (P&S). (A common initial standard in

the basics is achieved by helping the weaker student on a one-to-one basis with

reference to a book like [18].)

The total number of hours students are expected to spend studying for this

module is around 200. There are 24 hours of timetabled sessions with lecture at-

tendance and tutorial classes. There are in addition 16 contact hours envisaged for

“tmcs-csenki” — 2011/5/13 — 21:47 — page 48 — #4

48 Attila Csenki

individual tutorial help or revision. These sessions are arranged individually. The

remaining time will be spent by students with private study: bookwork, solving

tutorial exercises, the preparation of the coursework and exam preparation.

The module specifies a maximum of 20% coursework marks, and a maximum

of 80% examination marks.

2.2.2. Outline Syllabus

The following topics are discussed in the present form of the module:1

• A revision of the relevant concepts from P&S,

• Reliability characteristics of lifetime distributions,

• Parametric classes of lifetime distributions with applications,

• The normal distribution as a limit & its applications in Quality Control,

• Reliability block diagrams,

• Maintenance modelling,

• Ordering models,

• Markov modelling (incl. a rudimentary treatment of Laplace transforms),

• Parameter estimation: Method of Moments, Maximum Likelihood, Graphical

Methods,

• Censoring.

The above are broad headlines and there is scope for changing the emphasis from

year to year.

2.2.3. Computer Usage

Module Evolution

There is no programming activity specified in the module descriptor but it is

possible to set coursework which requires computer programming. In the initial

years, students were asked to implement in their coursework a simulation study of

an ordering model in a programming language of their choice; most of them chose

Java. During the same time period, examples and graphs produced in Maxima

were used in the lectures and tutorials in support of teaching. This was well

received by students even though no quantitative assessment of the effect of using

CAS has ever been performed; this so happened for the following three reasons,

1A selected set of topics covered in the module are discussed in detail in the companion paper [3].

“tmcs-csenki” — 2011/5/13 — 21:47 — page 49 — #5

Teaching Reliability Theory with the Computer Algebra System Maxima 49

• Student numbers are small and wildly fluctuating from year to year. Typi-

cally, there are five to ten people taking the module each year. (The present

cohort is a mere three students!)

• The instructional material based on Maxima grew gradually and it has there-

fore never been a well defined point in time marking the transition from the

‘without CAS’ to the ‘with CAS’ phase.

• Finally, the module notes based on CAS are subject to constant revision and

enlargement.

Why Use a CAS?

As reasoned above, no quantitative evidence can be produced to prove the utility

of a CAS in teaching the module RMA. It was, however, plausible that employing

a CAS in teaching would prove beneficial; the following points supported this

thesis.

• Students have a common interest and background in computers.

• The syllabus allows in part (more precisely, in the coursework component) for

computer programming to form part of the coursework. The programming

could be numerical and/or symbolic; a CAS can do both.

• In the author’s experience, computer generated course material enlivens the

presentation and makes ‘dry’ (i.e. formal, Mathematics based) material more

acceptable to non-mathematicians. In particular, the possibility of show-

ing computer generated graphs and illustrations during lectures, has proved

a great asset as this method is superior to the traditional ‘chalk-and-talk’

approach.

• There are many reported cases in the literature of successful computer usage

in Engineering education. Examples thereof are [9], [5] and [8]. Some text-

books use Computer Algebra Systems (CAS) for teaching cognate subjects

such as P&S (e.g. [7]). (In all these reported cases commercial software is

used.)

Why Use Maxima?

Initially, the use of Matlab was envisaged as many of our students have met

it before. It transpired soon, however, that for lack of licensing, a full version

of Matlab (incl. its Symbolic Math Toolbox) was not available. After some

research, it has been decided to build up a portfolio of teaching material written in

Maxima, a non-commercial CAS. The emphasis here is truly on free availability.

Furthermore, Maxima was identified, after some experimentation, as a viable

alternative to Matlab’s Symbolic Math Toolbox. It is well documented ([6],

“tmcs-csenki” — 2011/5/13 — 21:47 — page 50 — #6

50 Attila Csenki

[15], [10]) and comprehensive. In favour of Maxima was also the fact that the

author had experience with it in the reliability context ([1], [2]).

Over the years, a large amount of Maxima based teaching material, in the

form of lecture notes, exercises and coursework sheets, has been accumulated.

An interesting account of the history of CAS is in [11], with a prominent

role given to Maxima. We admit freely that the decision to use Maxima was

made at the time without knowing [11]. But, with hindsight, we feel vindicated:

Maxima is still one of the best known non-commercial CAS around which suited

our requirements.

Finally, the article [13] (accessible for readers in German) is yet another recent

account of the sustained interest in Maxima.

It has been brought to my attention by one of the referees that the free

software Sage [14] supports computation with objects in many different computer

algebra systems in a unified fashion using a common interface.

Maxima

Maxima is a large, mature CAS which seems to have served as a model (a pre-

decessor) for many of today’s commercial systems [11]. It was written in Lisp,

the first functional programming language. (In addition to its own programming

language, Maxima accepts Lisp code.2) The main criticism directed at Maxima

is the lack of a graphical user interface. This means that the output is normally

returned in a typewriter font, perhaps not a pretty sight, but of no importance as

far as its computational power goes. Furthermore, the function tex can be used

to make Maxima to return the output in a format ready for inclusion later in a

LATEX document. Maxima is available for every operating system and it is well

documented in the literature (e.g. [6]) as well as through an online manual.

There is no attempt in the module to teach Maxima to the students in a

systematic fashion. Instead, a collection of pertinent examples (as demonstrated

here) is given to them with the expectation that competence will be attained by

studying these examples in conjunction with the literature on Maxima. Students

may, if they choose to do so, ignore the available Maxima material alltogether

without affecting their measured ‘success’ in the module as Maxima knowledge

will not be assessed. It is felt, however, that such a course of action would be

immature and, indeed, the majority of our MSc students are curious enough to

be interested also in non-assessed material.

2This is yet another point which some of our students may find of interest as some with a first

degree from here have a background in the fuctional language Haskell, [17].

“tmcs-csenki” — 2011/5/13 — 21:47 — page 51 — #7

Teaching Reliability Theory with the Computer Algebra System Maxima 51

3. Discussion

We concentrate here on three selected topics: Normal Approximations, Mar-

kov Modelling and Laplace Transforms, addressed in Section 3.1, Section 3.2 and

Section 3.3, respectively.

The full report [4] with many additional examples is available from the author.

3.1. Normal Approximations

The Normal Approximation is introduced in Section A.1.1 with a view to

discussing later questions in Quality Control. We start by stating an appropriate

form of the Central Limit Theorem (CLT), followed by a series of examples.

The first three examples are designed to illustrate the CLT for exponentially

distributed summands. A Maxima implementation of the convolution operation

is shown in Example A.1, code M.A.1. Noteworthy is that convn_all recursively

defines a list of self-convolutions of a given function. Lists are an important data

structure in Maxima as well as in Lisp, the programming language in which

Maxima was written. Our students do not have direct knowledge of Lisp, the

first functional programming language, but those who did our first degree in

Computer Science will have been taught Haskell [17], a modern descendant of

Lisp. Therefore, code like that shown in M.A.1 is readily accessible for a great

number of students on our course. In M.A.2, we draw by Maxima the first few

convolution densities by using plot2d. We want to give to students a ‘template’

for plotting graphs rather than a complete, reasoned set of instructions for doing

so. It is hoped that this and subsequent examples will enable them to use [6] and

[15] independently. After standardizing in Example A.2, a visual impression is

given in Example A.3 of the quality of the normal approximation afforded by the

CLT.

Example A.4 is designed to illustrate the CLT for a wildly oscillating density,

perhaps not seen in practice, which, however, is interesting to students precisely

because of its unusual shape and also because it allows certain numerical features

of Maxima (such as numer and quad_qagi) to be demonstrated.

3.2. Markov Modelling

For the Markov material reviewed here, the students may wish to consult also

Ramakumar’s textbook [12].

“tmcs-csenki” — 2011/5/13 — 21:47 — page 52 — #8

52 Attila Csenki

Kolmogorov Equations

Access to Markov models is through the Komogorov equations in Sect. A.2.1.

Example A.5 is the smallest, two-state system to model a process with expo-

nential holding times. It serves to introduce the terminology and defines the Kol-

mogorov equations which then are solved symbolically in Maxima with M.A.8.

The example is concluded with a short digression on the numerical way using

Scilab.

In Example A.6, we consider an (n + 1)-state absorbing Markov model of

the n-stage Erlang distribution. Noteworthy is here in M.A.9 the implementa-

tion of the Kolmogorov equations by stages. Several Maxima features are ex-

emplified there: list manipulation, symbolic differentiation, recursive definition,

conditional. The example is concluded with a practical application calling for

Maxima’s numerical capabilities.

In the last item in this section, Exercise A.1, the reader is asked to apply

the techniques learnt to a more complex, 6-state repair model. The student is

asked in part (d) to apply the Maxima function linsolve, not seen heretofore

to obtain the long term solution of the system symbolically. Two alternatives

for defining the auxiliary function take are shown in the model solution, one by

iteration, in M.A.12, and one by recursion, in M.A.13. It is good educational

practice to consider both approaches.

3.3. Laplace Transforms

We indicate in Section A.3.1 the reason for the limitations of the approaches

taken in Section A.2 for analyzing Markov models. Laplace transforms are intro-

duced briefly in Section A.3.2 and the exponential density is taken to illustrate

some of the corresponding Maxima functions. The next and only example in

this section, Example A.8, is a continuation of work started in Exercise A.1. The

modified model is now absorbing and Laplace transforms are used for obtaining

moments of the time to system failure.

4. Conclusions

Aspects of an MSc module in Reliability Theory supported by the CAS

Maxima have been described here.

Are there alternatives to Maxima? If one insists on a non-commercial system,

there aren’t many. The only other, more recent one is Yacas (‘Yet Another

“tmcs-csenki” — 2011/5/13 — 21:47 — page 53 — #9

Teaching Reliability Theory with the Computer Algebra System Maxima 53

Computer Algebra System’, [19]) which to the best of the author’s knowledge has

not been used in conjunction with a similar lecture course. There is scope for

future work here.

Not all module topics have as yet been covered by applications and examples

written in Maxima. Implementation in Maxima of pertinent material for this

module is an ongoing task.

Acknowledgments

Financial assistance by my former Head of the Department, Professor Mike

Woodward, made it possible for me to participate in the IMA/SEFI Conference

Mathematical Education of Engineers in Loughborough in April 2008. This paper

is based on material presented in that conference.

The help of Miss Andrea Ryan is appreciated in compiling material on the

courses using RMA.

Two referees have commented on the original version [4] of this contribution.

As a result, I have drastically shortened the paper, still hoping to have retained

its original features. I have also more carefully reflected upon alternatives to

Maxima and on some (free) software supplementing it.

References

[1] A. Csenki, Joint interval reliability for Markov systems with an application in trans-
mission line reliability, Reliability Engineering and System Safety 92, 2007, 685–696.

[2] A. Csenki, On the three-state weather model of transmission line failures, Pro-
ceedings of the Institution of Mechanical Engineers, Part O, Journal of Risk and

Reliability 221, 2007, 217–228.

[3] A. Csenki, Salient features of a lecture course in Reliability Theory, International

Journal of Mechanical Engineering Education 36, 2008, 339–365.

[4] A. Csenki, Teaching reliability theory with the computer algebra system Max-

ima, Technical Report, School of Computing, Informatics, Media, The University

of Bradford, 2008.

[5] K. M. Dempsey, J. H. Kane and J. P. Kurtz, BEAMTOOL: Interactive beam anal-
ysis for today’s student and engineer, Computer Applications in Engineering Edu-

cation 13, 2005, 293–305.

[6] B. Heller, MACSYMA for Statisticians, NY: Wiley-Interscience, New York, 1991.

[7] J. J. Kinney, Probability – An Introduction with Statistical Applications, NY: Wiley,
New York, 1997.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 54 — #10

54 Attila Csenki

[8] D. G. Knight, Revisiting Newtonian and non-Newtonian fluid mechanics using com-
puter algebra, International Journal of Mathematical Education in Science and

Technology 37, 2006, 573–592.

[9] J. H. Mathews, Using a computer algebra system to teach double integration, Inter-

national Journal of Mathematical Education in Science and Technology 21, 1990,
723–732.

[10] Maxima website, http://maxima.sourceforge.net/.

[11] F. Pohlmann, Doing the Sums: Linux, GNU amd Mathematics, Linux User & De-

veloper 53, 2005, 52–55.

[12] R. Ramakumar, Engineering Reliability – Fundamentals and Applications, NJ:
Prentice-Hall, Englewood Cliffs, 1993.

[13] T. Romeyke, Algebra mit Maxima, Linux Magazin 09/08, 2008, 32–35 (in German).

[14] The Sage website, http://www.sagemath.org/.

[15] W. F. Schelter, Maxima Manual, Version 5.9.3, 2006,
http://maxima.sourceforge.net/docs/manual/en/maxima.html.

[16] Introduction to Scilab, version 4.0, User Guide, 2006, http://www.scilab.org/

ftp://ftp.inria.fr/INRIA/Scilab/documentation/pdf/intro.pdf.

[17] S. Thompson, Haskell – The Craft of Functional Programming, Second edition,
Addison-Wesley, Harlow, England, 1999.

[18] R. E. Walpole and R. H. Myers, Probability and Statistics for Engineers and Sci-

entists, NY: Macmillan, New York, 1978.

[19] Yacas website, http://yacas.sourceforge.net/homepage.html.

Appendix A. Edited Excerpts from Student Handouts

A.1. Approximations

A.1.1. The Normal Approximation

We start by stating the Central Limit Theorem and then consider several

examples eventually leading to an illustration of the quality of approximation

afforded thereby.

The Central Limit Theorem tells us that many random variables have a dis-

tribution which is well approximated by a normal distribution. This theorem is

stated in class informally and a mathematically oriented textbook on statistics is

recommended for the exact conditions under which it holds.

Central Limit Theorem. Let T1, . . . , Tn be random variables with respective

means a1, . . . , an and variances σ2
1 , . . . , σ2

n. Then, if the individual standardized

“tmcs-csenki” — 2011/5/13 — 21:47 — page 55 — #11

Teaching Reliability Theory with the Computer Algebra System Maxima 55

random contributions are small, the distribution of the standardized sum is ap-

proximately standard normal, i.e.

P

(

∑n
i=1(Ti − ai)
√
∑n

i=1 σ2
i

≤ x

)

≈ Φ(x). (1)

�

Example A.1. (Erlang Densities.) Let us assume that a system comprises

of n consecutively run units with respective lifetimes T1, . . . , Tn each of which is

exponentially distributed with rate λ. The system lifetime, Sn = T1 + . . . + Tn is

then Erlang−(λ, n) distributed. To find with Maxima the pdf of Sn, we define

conv and conv_all in M.A.1.

Maxima Code M.A.1: Implementing convolutions

1 conv(fU, fV) :=

2 (fU: subst(t-y, t, fU), fV: subst(y, t, fV), integrate(fU*fV, y, 0, t));

3 convn_all(fun, n) :=

4 (if n = 1 then

5 [fun]

6 else

7 (convs : convn_all(fun, n - 1), cons(conv(fun, first(convs)), convs)));

The Maxima function conv convolves the functions (densities) fU and fV ac-

cording to

(fU ∗ fV)(t) =

∫ t

0

fU (t − y)fV (y)dy, (2)

whereas convn_all returns the list of the first n convolutions of a given den-

sity with itself. For example, the densities of the first five partial sums S1, . . . , S5

are obtained thus
(%i3) convn_all(lambda * %e^(- lambda * t), 5);

Is t positive, negative, or zero?

pos;

4 5 - t lambda 3 4 - t lambda

t lambda %e t lambda %e

(%o3) [-----------------------, -----------------------,

24 6

2 3 - t lambda

t lambda %e 2 - t lambda - t lambda

-----------------------, t lambda %e , lambda %e]

2

The five stage Erlang density (the first entry of the above list) is extracted for
later reference as follows.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 56 — #12

56 Attila Csenki

(%i4) first(%);

4 5 - t lambda

t lambda %e

(%o4) -----------------------

24

Assuming unit rate (λ = 1), the densities of S1, . . . , S5 are plotted in Fig. 1

using the Maxima code M.A.2.

Maxima Code M.A.2: Drawing Fig. 1

1 plot2d(convn_all(%e^(-t),5),

2 [t, 0, 10],

3 [gnuplot_curve_styles, [‘‘with lines 7"]],

4 [nticks, 50],

5 [gnuplot_term, ps],

6 [gnuplot_out_file, ‘‘conv_exp.ps"],

7 [gnuplot_preamble, ‘‘set title ’Convolution densities’;

8 set grid;

9 set nokey;

10 set xlabel ’time’;

11 set ylabel ’pdf’"]);

Figure 1. Convolving exponentials with unit rates

Example A.2. (Standardization.) Next we introduce the notion of standard-

ization. Let U be a random variable whose pdf, mean and standard deviation

are fU , aU and σU , respectively. Then the random variable V = (U − aU)/σU

“tmcs-csenki” — 2011/5/13 — 21:47 — page 57 — #13

Teaching Reliability Theory with the Computer Algebra System Maxima 57

is referred to as the standardized version of U . It has zero mean, unit standard

deviation and pdf

fV (v) = σUfU (σUv + aU). (3)

Using (3), we implement in M.A.3 the standardization of a pdf (which is written

as a function of t) by the function standard.

Maxima Code M.A.3: Definition of standard

1 standard(pdf,mean,std) := std * subst(std * t + mean, t, pdf);

As an example, we standardize a normal pdf

pdf(t) =
1√

2πσ2
e−

(t−a)2

2σ2 ,

thus

(%i14) standard(1/(sigma*sqrt(2*%pi))*%e^(-(t-a)^2/(2*sigma^2)), a,sigma);

2

t

- --

2

%e

(%o14) -----------------

sqrt(2) sqrt(%pi)

and, as expected, we thereby obtain the standard normal density. �

Example A.3. (Standardized Erlangs.) Fig. 2 shows the standardized con-

volution densities for n = 10 and n = 50, as well as the limiting density φ. To

draw the Fig. 2, the list of the first fifty standardized convolution densities was

produced; this was accomplished by the Maxima function dens_list, defined

in M.A.4.

Maxima Code M.A.4: Definition of dens list

1 dens_list(pdf, mean, std, n) := maplist(standard,

2 reverse(convn_all(pdf, n)),

3 mean * makelist(i, i, 1, n),

4 std * makelist(sqrt(i), i, 1, n));

Fig. 2 was plotted by M.A.5.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 58 — #14

58 Attila Csenki

Figure 2. The normal approximation: n = 10 (+) and n = 50 (•)

Maxima Code M.A.5: Drawing Fig. 2

1 plot2d([tenth(densities), last(densities), phi],

2 [t, -3, 5],

3 [gnuplot_curve_styles, [‘‘with points 1",

4 ‘‘with points 7",

5 ‘‘with lines 7"]],

6 [nticks, 1],

7 [gnuplot_term, ps],

8 [gnuplot_out_file, ‘‘normal_approx.ps"],

9 [gnuplot_preamble, ‘‘set title ’The normal approximation’;

10 set grid;

11 set nokey;

12 set xlabel ’time’;

13 set ylabel ’pdf’"]);

The code in M.A.5 uses the Maxima functions phi (the standard normal den-

sity φ) and densities; they are defined in M.A.6.

Maxima Code M.A.6: Definitions for M.A.5

1 phi : %e^(-t^2 / 2) / sqrt(2*%pi);

2 densities : dens_list(%e^(-t), 1, 1, 50);

(As a by-product, the latter also displays on the terminal the list of the first

fifty symbolic expressions for the convolution densities. This was suppressed by

setting ttyoff : true.) �

“tmcs-csenki” — 2011/5/13 — 21:47 — page 59 — #15

Teaching Reliability Theory with the Computer Algebra System Maxima 59

Example A.4. (An Oscillating Density.) The density of the life distribution

we are going to consider here is assumed to have the shape of an attenuating

cosine,

f(t) ∼ (1 + cos(10t))e−t.

We use Maxima to find out what the normalizing constant should be in order

for f to be a pdf.

(%i1) integrate ((1 + cos(10*t)) * %e^(-t),t,0,inf);

Principal Value

102

(%o1) ---

101

Thus,

f(t) =
101

102
(1 + cos (10t)) e−t, t > 0,

is a lifetime pdf. M.A.7 draws the graph of f in Maxima (Fig. 3).

Maxima Code M.A.7: Drawing Fig. 3

1 f : (101/102) * (1 + cos(10*t)) * %e^(-t);

2 plot2d(f, [t, 0, 5],

3 [gnuplot_curve_styles, [‘‘with lines 7"]],

4 [nticks, 50],

5 [gnuplot_term, ps],

6 [gnuplot_out_file, ‘‘osc_dens.ps"],

7 [gnuplot_preamble, ‘‘set title ’An oscillating density’;

8 set grid;

9 set nokey;

10 set xlabel ’t’;

11 set ylabel ’f(t)’"]);

f appears rather artificial and it indeed does not correspond to any known

real situation. It is, however, suitable for illustrating the applicability of the

Central Limit Theorem even for a small number of summands.

To find out more about our distribution, we determine its mean: we use

Maxima to calculate the indefinite integral of tf(t) and substitute t = 0 (the

lower limit of integration).

(%i4) subst(0,t,integrate(t*f,t));

5051

(%o4) - ----

5151

“tmcs-csenki” — 2011/5/13 — 21:47 — page 60 — #16

60 Attila Csenki

Figure 3. An oscillating density

As the integral vanishes for t = +∞ (this we know by visual inspection of the

explicit form of the antiderivative produced by Maxima, not shown here), the

exact value of the mean is 5051
5151 . A decimal approximation thereof we obtain by

(%i5) - %, numer;

(%o5) 0.98058629392351

We may also use one of the numerical integration routines of Maxima to find

out an approximate value for the mean.

(%i6) quad_qagi(’’f*t,t,0,inf);

...

(%o6) [0.9805862939463, 6.514429589477498E-9, 1155, 0]

The integral is the first entry in this list.

(%i7) mean : % [1];

(%o7) 0.9805862939463

(The above is seen to be for practical purposes identical to the previous value.)

In a similar fashion we compute the second central moment.

(%i8) quad_qagi(’’f*t*t,t,0,inf) [1];

...

(%o8) 1.979817434269797

The standard deviation is then obtained by

(%i9) std : sqrt(% - mean^2);

(%o9) 1.009092639153837

Similarly to the earlier example, we now create the list of all convolution

densities up to degree ten by

“tmcs-csenki” — 2011/5/13 — 21:47 — page 61 — #17

Teaching Reliability Theory with the Computer Algebra System Maxima 61

(%i10) densities : dens_list(f, mean, std, 10);

...

and finally plot the 5th, the 10th normalized densities and the normal pdf φ

by

(%i11) plot2d ([fifth(densities), last(densities), phi], [t, -2, 5], ...

The result is shown in Fig. 4.

Figure 4. Normal approximations for an oscillating density for n = 5, 10

It is seen that in spite of the oscillating behaviour of the density f , after ten

convolutions it becomes ’smooth’. And, even after convolving the density five

times only, it is reasonably well approximated by the standard normal pdf. �

A.2. Markov Modelling

A.2.1. Kolmogorov Equations

Example A.5. (Two-state System.) We consider a two-state system with

transition rate diagram (or Markov diagram) as shown in Fig. 5.

1 2

ρ

µ

Figure 5. The two-state system

“tmcs-csenki” — 2011/5/13 — 21:47 — page 62 — #18

62 Attila Csenki

It comprises a single machine which can be in one of two states: the working

state À and the repair state Á (shaded). Failure and repair rates are ρ and µ,

respectively. Denoting by Λ = [λij]i,j=1,2 the system’s transition rate matrix, the

Kolmogorov equations are

dp1(t)

dt
= λ11p1(t) + λ21p2(t),

dp2(t)

dt
= λ12p1(t) + λ22p2(t),

or, more explicitly,

dp1(t)

dt
= −ρp1(t) + µp2(t), (4)

dp2(t)

dt
= ρp1(t) − µp2(t). (5)

Both (4) and (5) are readily written down with reference to the system’s Markov

diagram in Fig. 5:

• On the left hand side, dpi(t)
dt

is the rate of flow of probability into state i.

• On the right hand side,

– The coefficient of pi(t) is the negative sum of all transition rates labelling

outgoing edges from state i. This is the ith diagonal entry of the rate

matrix. It is the rate of loss of probability of state i.

– The coefficient of pj(t), j 6= i, is the rate labelling the incoming edge

pointing to state i from state j. It is the rate of gain of probability by

state i, received from state j.

Furthermore,

• Once the Kolmogorov equations are set up, we may write down the transpose

of the transition rate matrix by simply copying the pattern of coefficients as

they appear in the equations.

Λt =

(

−ρ µ

ρ −µ

)

(6)

These rules can be used to obtain the Kolmogorov equations and the transition

rate matrix for systems of any size.

To solve the Kolmogorov equations, we need some initial conditions. Let us

assume that at time zero the machine is working, i.e. it is in state À:

p1(0) = 1, p2(0) = 0. (7)

“tmcs-csenki” — 2011/5/13 — 21:47 — page 63 — #19

Teaching Reliability Theory with the Computer Algebra System Maxima 63

Equations (4)–(7) are solved in Maxima by M.A.8.

Maxima Code M.A.8: Solving (4)–(7)

1 eq1 : diff(p1(t), t) = - rho * p1(t) + mu * p2(t);

2 eq2 : diff(p2(t), t) = rho * p1(t) - mu * p2(t);

3 atvalue(p1(t), t = 0, 1);

4 atvalue(p2(t), t = 0, 0);

5 desolve([eq1, eq2], [p1(t), p2(t)]);

Running M.A.8 produces the output
- (rho + mu) t

rho %e mu

(%o10) [p1(t) = -------------------- + --------,

rho + mu rho + mu

- (rho + mu) t

rho rho %e

p2(t) = -------- - --------------------]

rho + mu rho + mu

A visually more appealing output can be achieved by running the tex command.
(%i11) tex(%);

$$\left[{\it p_1}\left(t\right)={{\rho\,e^ {- \left(\rho+\mu\right)

\,t }}\over{\rho+\mu}}+{{\mu}\over{\rho+\mu}} , {\it p_2}\left(t

\right)={{\rho}\over{\rho+\mu}}-{{\rho\,e^ {- \left(\rho+\mu\right)

\,t }}\over{\rho+\mu}} \right] $$

(%o11) false

The output thus produced is displayed in LATEX as shown below.

[

p1 (t) =
ρ e−(ρ+µ) t

ρ + µ
+

µ

ρ + µ
, p2 (t) =

ρ

ρ + µ
− ρ e−(ρ+µ) t

ρ + µ

]

This shows that the long term point availability, which is defined as limt→∞ p1(t),

is µ/(ρ + µ), whereas the long term point unavailability, defined as limt→∞ p2(t),

is ρ/(ρ + µ).

Thus far we have a list of symbolic solutions. We may use it for generating

numerical solutions. As an example, we calculate the point availability p1(t) for

t = 100 with the failure rate ρ = 0.01 and repair rate µ = 0.1 by
(%i12) ev(rhs(first(%o10)), rho = 0.01, mu = 0.1, t = 100);

(%o12) .9090924274273446

An alternative to the above method of solving the Kolmogorov equations is

by using matrix exponentials. A closed form expression for the solution of the

Kolmogorov equations (4)–(5) is given by

p(t) = p(0)etΛ, (8)

“tmcs-csenki” — 2011/5/13 — 21:47 — page 64 — #20

64 Attila Csenki

where the rate matrix Λ is defined in (6). If the prime interest is in a numerical

rather than a symbolic solution then we may evaluate the right hand side of (8)

with a system where the matrix exponential is implemented. Scilab
3 confirms

our earlier result thus

-->p = [1 0] * expm(100 * [-0.01 0.01; 0.1 -0.1]); disp(p(1));

0.9090924

�

Example A.6. (Markov chain model of an (n + 1)-stage Erlang distribution.)

Consider the (n + 1)-state Markov chain with transition rate diagram as shown

in Fig. 6.

0 1 2 . . . n − 1 n

ρ ρ ρ ρ ρ

Figure 6. Modelling the Erlang distribution.

Let the system start in state 0 at time t = 0. The time of arrival in state n,

the absorbing state, is then Erlang-n distributed with some parameter ρ > 0; let

us call its cdf pn(t). The system’s Kolmogorov equations are

dp0(t)

dt
= −ρp0(t)

dp1(t)

dt
= ρp0(t) − ρp1(t)

... (9)

dpn−1(t)

dt
= ρpn−2(t) − ρpn−1(t)

dpn(t)

dt
= ρpn−1(t)

Equation (9) is implemented by the Maxima function stages, defined in M.A.9.

3
Scilab is a Matlab-like free programming environment of French origin [16]. Its use won’t be

pursued here further.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 65 — #21

Teaching Reliability Theory with the Computer Algebra System Maxima 65

Maxima Code M.A.9: Implementation of (9)

1 stages(n) :=

2 (if n = 1 then

3 block(eq0 : diff(p0(t), t) = - rho * p0(t),

4 eq1 : diff(p1(t), t) = rho * p0(t),

5 atvalue(p0(t), t = 0, 1),

6 atvalue(p1(t), t = 0, 0),

7 eqs : [eq0, eq1],

8 probs : [p0(t), p1(t)])

9 else

10 block(stages(n - 1),

11 concat(eq, (n-1)) :: diff(concat(p, (n-1))(t), t) =

12 rho * concat(p, (n-2))(t) - rho * concat(p, (n-1))(t),

13 concat(eq, n) :: diff(concat(p, n)(t), t) = rho * concat(p, (n-1))(t),

14 atvalue(concat(p, n)(t), t = 0, 0),

15 eqs : endcons(concat(eq, n), endcons(concat(eq, (n-1)), init(eqs))),

16 probs : endcons(concat(p, n)(t), probs)));

Noteworthy are the following features of stages.

• It is defined by recursion, exploiting the patterned nature of the coefficients

on the right hand side of (9).

• It creates the global variables eqs and probs, to be used later in the arguments

of Maxima’s differential equations solver desolve.

• Finally, it uses the auxiliary function init which returns the initial section

of the input list. Before defining stages by M.A.9, declare init by

init(list) := reverse(rest(reverse(list)));

Once the Kolmogorov equations are available, the Erlang cdf for a given value of

n is returned by ecdf, defined in M.A.10.

Maxima Code M.A.10: Implementation of the Erlang cdf & pdf

1 ecdf(n) := (kill(eqs, probs), stages(n), rhs(last(desolve(ev(eqs), ev(probs)))));

2 epdf(n) := diff(ecdf(n), t);

For n = 5, for example, we get respectively the cdf and pdf of the five stage

Erlang distribution by

(%i5) tex(ecdf(5));

−ρ4 t4 e−ρ t

24
− ρ3 t3 e−ρ t

6
− ρ2 t2 e−ρ t

2
− ρ t e−ρ t − e−ρ t + 1

(%i6) tex(epdf(5));

“tmcs-csenki” — 2011/5/13 — 21:47 — page 66 — #22

66 Attila Csenki

ρ5 t4 e−ρ t

24
. (10)

We have met the Erlang density (10) in Example A.1 before.

Application. A component’s lifetime is known to follow an exponential dis-

tribution with mean unity. (The expected lifetime is taken as the unit of time.)

A submarine carries on board five such components, one original and four spares.

The system’s lifetime is the total of the five component lifetimes. What is the

probability that the system will survive a mission of length 2?

This question is answered by Maxima simply by

(%i7) 1 - float(subst([rho = 1, t = 2], ecdf(5)));

(%o7) 0.94734698265629

�

Exercise A.1. (Complex System, Asymptotic Behaviour.) A system com-

prises two machines, A and B, and one repairman. The system can be in one of

the following six states.

À Machine A is working and machine B is on standby, ready to operate as soon

as A fails.

Á This state is analogous to state 1 with the labels A and B interchanged.

Â Machine A is working and machine B is being repaired.

Ã This state is analogous to state 3 with the labels A and B interchanged.

Ä Both machines are down and the repairman is busy repairing machine A.

Å Both machines are down and the repairman is busy repairing machine B.

Failure and repair rates are ρA, ρB and µA, µB , respectively. It is assumed that a

machine on standby won’t deteriorate and that the repairman completes a repair

already started, before possibly attending the next repair. The system is deemed

operational if one of the machines is working. (The other may be on standby or

it may be in the repair shop.) Initiall, the system is in state À.

(a) Draw the system’s transition rate diagram.

(b) Write down the Kolmogorov differential equations for the state probabilities.

(c) Write down the system’s transition rate matrix.

(d) Assume now that the two machines are nominally identical and therefore the

failure and repair rates are identical each, i.e. ρA = ρB = ρ and µA = µB = µ,

say.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 67 — #23

Teaching Reliability Theory with the Computer Algebra System Maxima 67

(i) Write down the equations which the long term state probability vector

p = (p1, . . . , p6) satisfies.

(ii) Obtain p by Maxima’s function linsolve.

(iii) Write down an expression for the system’s long term availability in terms

of components’ failure and repair rates. Compute the value of the long

term availability for the case when the mean time to repair is one tenth

of the mean time to failure.

Solution A.1.

(a) In Fig. 7, the system states are labelled with four-tuples whose entries mean

in turn: working, standby, under repair, waiting for repair.

1 : (A, B;−,−)

2 : (B, A;−,−) 3 : (A,−; B,−)

4 : (B,−; A,−) 5 : (−,−; A, B)

6 : (−,−; B, A)

ρA

ρB

µB

ρA

µA

ρB

µA

µB

Figure 7. Markov model of a two-machine-one-repairman system.

(b)

dp1(t)

dt
= −ρAp1(t) + µBp3(t) (11)

dp2(t)

dt
= −ρBp2(t) + µAp4(t) (12)

dp3(t)

dt
= −(µB + ρA)p3(t) + ρBp2(t) + µAp5(t) (13)

dp4(t)

dt
= −(µA + ρB)p4(t) + ρAp1(t) + µBp6(t) (14)

dp5(t)

dt
= −µAp5(t) + ρBp4(t) (15)

dp6(t)

dt
= −µBp6(t) + ρAp3(t) (16)

“tmcs-csenki” — 2011/5/13 — 21:47 — page 68 — #24

68 Attila Csenki

The initial conditions are p1(0) = 1, p2(0) = . . . = p6(0) = 0.

(c) From (11)–(16), the transition matrix Λ is

Λ =



















−ρA 0 0 ρA 0 0

0 −ρB ρB 0 0 0

µB 0 −(µB + ρA) 0 0 ρA

0 µA 0 −(µA + ρB) ρB 0

0 0 µA 0 −µA 0

0 0 0 µB 0 −µB



















(d) (i) Set the left hand sides of (11)–(16) to zero to get

0 = −ρp1 + µp3 (17)

0 = −ρp2 + µp4 (18)

0 = −(µ + ρ)p3 + ρp2 + µp5 (19)

0 = −(µ + ρ)p4 + ρp1 + µp6 (20)

0 = −µp5 + ρp4 (21)

0 = −µp6 + ρp3 (22)

The seventh equation is the normalizing condition

p1 + . . . + p6 = 1 (23)

(ii) It is p = c−1(µ2, µ2, µρ, µρ, ρ2, ρ2) with c = 2(µ2 + µρ + ρ2). We obtain

this in Maxima by M.A.11.

Maxima Code M.A.11: Solving (17)–(22) & (23)

1 soln : linsolve([- rho * p1 + mu * p3,

2 - rho * p2 + mu * p4,

3 rho * p2 - (mu + rho) * p3 + mu * p5,

4 rho * p1 - (mu + rho) * p4 + mu * p6,

5 rho * p4 - mu * p5,

6 rho * p3 - mu * p6,

7 p1 + p2 + p3 + p4 + p5 + p6 - 1],

8 [p1, p2, p3, p4, p5, p6]);

(iii) The long term availability is

p1 + p2 + p3 + p4 =
µ2 + µρ

µ2 + ρ2 + µρ
=

1 + ρ
µ

1 + ρ
µ

+
(

ρ
µ

)2 ≈ 0.991

We confirm this by first running M.A.11 and then proceeding with

“tmcs-csenki” — 2011/5/13 — 21:47 — page 69 — #25

Teaching Reliability Theory with the Computer Algebra System Maxima 69

(%i3) probs : subst([mu = 10 * rho], maplist(rhs,soln));

50 50 5 5 1 1

(%o3) [---, ---, ---, ---, ---, ---]

111 111 111 111 222 222

(%i4) float(lsum(i,i,take(4,probs)));

(%o4) 0.99099099099099

A function take is defined here for creating a list consisting of a speci-

fied number of entries of a given list. Two definitions of take are shown

below, one based on iteration (in M.A.12), the other based on recursion

(in M.A.13).

Maxima Code M.A.12: Definition of take by iteration

1 take(n, list) :=

2 (if n < length(list) then

3 block([temp, accum],

4 accum : [],

5 temp : list,

6 for i : 1 thru n do

7 (accum : endcons(first(temp), accum),

8 temp : rest(temp)),

9 accum)

10 else

11 list);

Maxima Code M.A.13: Definition of take by recursion

1 take(n, list) :=

2 (if n < length(list) then

3 if n = 0 then

4 []

5 else

6 cons(first(list),take(n - 1, rest(list)))

7 else

8 list);

�

A.3. Laplace Transforms

A.3.1. Why Use Laplace Transforms?

With desolve (e.g. M.A.8), Maxima solves the Kolmogorov equations by

transforming them into the Laplace Transform domain where a system of lin-

ear equations is established for the Laplace transforms p∗
1(s), p

∗
2(s), . . . of the

“tmcs-csenki” — 2011/5/13 — 21:47 — page 70 — #26

70 Attila Csenki

unknown functions p1(t), p2(t), Maxima solves these equations for the trans-

forms p∗1(s), p
∗
2(s), . . . and then tries to invert each of them to obtain the original

functions p1(t), p2(t), This is where problems can arise. As each of the Laplace

transforms is a rational function whose denominator is a polynomial of degree n,

the number of states, the system may not be able to carry out a partial fraction

decomposition as there is no closed form expression for the roots of a polynomial

of degree n ≥ 5.4 Maxima needs, however, a partial fraction decomposition of

the Laplace transforms for termwise invertion.

The cause of the difficulties should not really concern us here too much as

we have set out to rely entirely on Maxima. However, it turns out that knowing

some facts about Laplace transforms and using Maxima will help us to get a

partial solution also to larger problems, i.e. n ≥ 5.

A.3.2. Laplace Transforms

We collect here for later reference some facts concerning Laplace transforms.

For a function f(t) defined for t > 0, its Laplace Transform is defined by

f∗(s) =

∫ ∞

0

e−stf(t)dt. (24)

Knowing f∗ allows f to be ’reconstructed’ and various operations in the ’time do-

main’ (the t-domain) correspond to certain transformations in the the s-domain.

We want to address here those related to integration.

Take the limit s ↓ 0 in (24). This reads as

f∗(0+) =

∫ ∞

0

f(t)dt. (25)

Differentiate (24) with respect to s, which we carry out ’under the integral sign’,

and take s to zero as before to get

df∗(s)

ds

∣

∣

∣

∣

s↓0

= −
∫ ∞

0

tf(t)dt. (26)

Repeated application of the argument leading to (26) shows that

dnf∗(s)

dsn

∣

∣

∣

∣

s↓0

= (−1)n

∫ ∞

0

tnf(t)dt. (27)

4This is a deep theorem rooted in Group Theory, established in the 19th century by the Nor-

wegian mathematician Abel.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 71 — #27

Teaching Reliability Theory with the Computer Algebra System Maxima 71

The notation L(f(t)|s) is also used at times to denote the Laplace transform of

f .

Example A.7. (Moments of the Exponential Distribution.) Apply (25)–(27)

to f(t) = λe−λt, the exponential density with rate λ.
(%i1) f : lambda * %e^(- lambda * t);

- t lambda

(%o1) lambda %e

(%i2) lap : laplace(f,t,s);

lambda

(%o2) ----------

lambda + s

(%i3) int : limit(lap,s,0,plus);

(%o3) 1

(%i4) mean : limit(-diff(lap,s),s,0,plus);

1

(%o4) ------

lambda

(%i5) sndmom : limit(diff(lap,s,2),s,0,plus);

2

(%o5) -------

2

lambda

�

Example A.8. (Complex System, Expected Lifetime.) We want to illustrate

the usefulness of (25) by employing it for finding out information about a system’s

first time to failure T . Let us take the six-state system from Exercise A.1. Its

state space is partitioned into the set of up states U = {1, 2, 3, 4} and the set

of down states D = {5, 6}. We rearrange the transition rate diagram in Fig. 7

such that the states in D become absorbing, giving Fig. 8. The event {T > t} is

equivalent to the system in Fig. 8 being at time t in one of the up states; thus,

the system reliability is

R(t) = 1−P (T < t) = 1−P (system is in D at time t) = 1−(p5(t)+p6(t)). (28)

Take Laplace transforms in (28) to get

L(R(t)|s) = L(1 − p5(t) − p6(t)|s). (29)

We know that the integral of the reliability function is the expected system life-

time. Thus, by (25) and (29),

E(T) =

∫ ∞

0

R(t)dt = lim
s↓0

L(R(t)|s) = lim
s↓0

L(1 − p5(t) − p6(t)|s). (30)

“tmcs-csenki” — 2011/5/13 — 21:47 — page 72 — #28

72 Attila Csenki

1 : (A, B;−,−)

2 : (B, A;−,−) 3 : (A,−; B,−)

4 : (B,−; A,−) 5 : (−,−; A, B)

6 : (−,−; B, A)

ρA

ρB

µB

ρA

µA

ρB

Figure 8. Absorbing Markov model, states in D are shaded.

The system in Fig 8 is implemented by M.A.14.

Maxima Code M.A.14: Implementation of the system in Fig. 8

1 eq1 : diff(p1(t), t) = - rhoA * p1(t) + muB * p3(t);

2 eq2 : diff(p2(t), t) = - rhoB * p2(t) + muA * p4(t);

3 eq3 : diff(p3(t), t) = - (muB + rhoA) * p3(t) + rhoB * p2(t);

4 eq4 : diff(p4(t), t) = - (muA + rhoB) * p4(t) + rhoA * p1(t);

5 eq5 : diff(p5(t), t) = rhoB * p4(t);

6 eq6 : diff(p6(t), t) = rhoA * p3(t);

7 atvalue(p1(t), t = 0, 1);

8 atvalue(p2(t), t = 0, 0);

9 atvalue(p3(t), t = 0, 0);

10 atvalue(p4(t), t = 0, 0);

11 atvalue(p5(t), t = 0, 0);

12 atvalue(p6(t), t = 0, 0);

13 soln : desolve([eq1, eq2, eq3, eq4, eq5, eq6],

14 [p1(t), p2(t), p3(t), p4(t), p5(t), p6(t)]);

Run the code in M.A.14 and inspect soln to see that Maxima is unable to provide

an explicit solution; the right hand sides of the entries of soln will be seen to be

in the form ilt(...) where ilt stands for the inverse Laplace transform which

in this case Maxima cannot evaluate further.

However, the expected system lifetime can be obtained in Maxima.

Maxima Code M.A.15: Implementation of (30)

1 lap : laplace(1 - rhs(fifth(soln)) - rhs(sixth(soln)), t, s);

2 meanlife : limit(lap, s, 0, plus);

“tmcs-csenki” — 2011/5/13 — 21:47 — page 73 — #29

Teaching Reliability Theory with the Computer Algebra System Maxima 73

Running M.A.15, Maxima returns for E(T) in meanlife the following:

(ρA + µB) ρ2
B +

(

ρ2
A + (µB + 2 µA) ρA + µA µB

)

ρB + µA ρ2
A + µA µB ρA

(ρ2
A + µB ρA) ρ2

B + µA ρ2
A ρB

Plausability checks for meanlife:

• meanlife has the dimension [TIME].

• If the repair rates are zero, the system specializes to two units being operated

in succession, each having an exponential lifetime. The system’s mean lifetime

is, as expected, 1/ρA + 1/ρB:
(%i18) e1 : expand(subst([muA = 0, muB = 0], meanlife));

1 1

(%o18) ---- + ----

rhoB rhoA

By how much is the present system better than a one-machine system with

failure rate ρ and no repair? To find a meaningful answer to this question, we

assume that the two machines are nominally identical with failure rates ρ and

repair rates µ = 10ρ. Then, Maxima tells us that the expected lifetime of the

system is twelve times that of a single machine:
(%i20) et : subst([muA=10*rho,muB=10*rho,rhoA=rho,rhoB=rho],meanlife);

12

(%o20) ---

rho

An analogue to (30) is the following formula for the second moment of the

time to failure.5

E(T 2) =

∫ ∞

0

P (T 2 > u)du =

∫ ∞

0

P (T >
√

u)du

= 2

∫ ∞

0

P (T > t)tdt = 2

∫ ∞

0

tR(t)dt

= −2 lim
s↓0

dL(1 − p5(t) − p6(t)|s)
ds

. (31)

We find the right hand side of (31) in Maxima by
(%i21) sndmoment : - 2 * tlimit(diff(lap,s),s,0,plus);6

(%o21) ...

Maxima responds with a large rational expression which we won’t show here.

Its numerator is found by

5To justify (31), use in turn: a substitution with t =
√

u, (26), and (29).
6The Maxima function tlimit may use Taylor series in finding the limit of its first argument.

It is like limit from the user’s point of view.

“tmcs-csenki” — 2011/5/13 — 21:47 — page 74 — #30

74 Attila Csenki

(%i22) num(sndmoment);

whereupon Maxima responds with

2
((

ρ
2
A + 2µBρA + µ

2
B

)

ρ
4
B

+
(

ρ
3
A + (2µB + 4µA)ρ2

A + (µ2
B + 6µAµB)ρA + 2µAµ

2
B

)

ρ
3
B

+
(

ρ
4
A + (2µB + 4µA)ρ3

A + (µ2
B + 9µAµB + 3µ

2
A)ρ2

A

+(4µAµ
2
B + 4µ

2
AµB)ρA + µ

2
Aµ

2
B

)

ρ
2
B

+
(

2µAρ
4
A + (5µAµB + 2µ

2
A)ρ3

A + (3µAµ
2
B + 5µ

2
AµB)ρ2

A + 2µ
2
Aµ

2
BρA

)

ρB

+ µ
2
Aρ

4
A + 2µ

2
AµBρ

3
A + µ

2
Aµ

2
Bρ

2
A

)

(32)

Its denominator is obtained by
(%i23) denom(sndmoment);

with Maxima responding with
(

ρ
4
A + 2 µB ρ

3
A + µ

2
B ρ

2
A

)

ρ
4
B +

(

2 µA ρ
4
A + 2 µA µB ρ

3
A

)

ρ
3
B + µ

2
A ρ

4
A ρ

2
B (33)

Plausability checks for sndmoment:

• It is seen from (32) and (33) that sndmoment has the correct dimension,

[TIME2].

• If the repair rates are zero, the system specializes, as before, to the hypo-

exponential case. The system’s lifetime T has, as expected, the variance

1/ρ2
A + 1/ρ2

B:
(%i25) e2 : subst([muA = 0, muB = 0], sndmoment)$

(%i26) var : expand(e2 - e1^2);

1 1

(%o26) ----- + -----

2 2

rhoB rhoA

Let us now examine the second moment of the system lifetime under the same

conditions as applied earlier when evaluating its first moment:
(%i27) e2t : subst([muA=10*rho,muB=10*rho,rhoA=rho,rhoB=rho],sndmoment);

286

(%o27) ----

2

rho

Thus, the variance of T is
(%i28) var : e2t - et^2;

142

(%o28) ----

2

rho

“tmcs-csenki” — 2011/5/13 — 21:47 — page 75 — #31

Teaching Reliability Theory with the Computer Algebra System Maxima 75

giving an approximate coefficient of variation of 0.993:
(%i29) float(sqrt(var)/et);

0.99303127398442 rho

(%o29) --------------------

abs(rho)

This is a very similar value to that what we would have obtained in the

one-machine-no-repairman situation.

Higher moments of T may be obtained in a similar fashion, now using (27).�

ATTILA CSENKI

SCHOOL OF COMPUTING

INFORMATICS AND MEDIA

UNIVERSITY OF BRADFORD

BRADFORD, WEST YORKSHIRE

BD7 1DP, UK

E-mail: a.csenki@bradford.ac.uk

(Received July, 2010)

