
“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 133 — #1

8/1 (2010), 133–148

Software engineering education in

cooperation with industrial partners

Zoltán Horváth, Tamás Kozsik and László Lövei

Abstract. This paper presents our experiences on teaching software engineering in teams
which are organized around different R+D projects. These long-running, innovative
projects are carried out in cooperation with industrial partners, and are supported
by student exchange. While MSc and PhD students work together with faculty staff
members on the projects in an industrial-like environment, the students develop skills
that would be otherwise very hard for them to obtain. The methodological contributions
of the paper are illustrated by, and substantiated with, the description of a concrete
software engineering project.

Key words and phrases: software engineering education, team work, research and devel-
opment projects.

ZDM Subject Classification: P55, P65, Q55.

1. Introduction

This paper presents our experiences on a software engineering course orga-

nized around different R+D projects for students working in research teams. In-

volving students in research projects and requiring students to work in teams are

widely used methods in software engineering education. However, such projects

often remain at the level of a university excercise both in size and in complexity.

The projects described in this paper are not of that kind. They have been run-

ning for years and yield large software systems to maintain and extend. They are

Supported by ELTE IKKK and Ericsson Hungary.

Copyright c© 2010 by University of Debrecen



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 134 — #2

134 Zoltán Horváth, Tamás Kozsik and László Lövei

carried out in cooperation with industrial partners, and are supported by student

exchange. Furthermore, MSc and PhD students and faculty staff members work

together on the projects in an international and industrial-like environment. Un-

der these circumstances the students develop skills that would be otherwise very

hard for them to obtain.

A major advantage in using real industrial projects in education compared to

general university exercises is the growth of collective and individual responsibility

in maintaining high quality and respecting deadlines. The fact that the results of

these innovative projects are used in the software industry is highly motivating

for the students.

The first project started 3 years ago. The project, aiming at the development

of a refactoring tool for the Erlang programming language, is supported by Erics-

son Hungary, and it is being carried out in Erasmus cooperation with University

of Kent, University of Sheffield and Erlang Training and Consulting.

The paper is structured as follows. Section 2 gives an overview of the projects

involved in the course. In Sections 3 to 7 one of the projects, namely the one about

refactoring Erlang programs is used for illustration purposes. Section 3 summa-

rizes the relevant curriculum. It sketches the preceding courses, explains how the

project course fits in the curriculum, and illustrates how the project results can

be used again to improve education. Section 4 describes the methodology applied

during the course, and how the project team is organized. Section 5 discusses how

to design the structure of the software developed during the project in order to

facilitate the definition of tasks for the students. Section 6 enumerates the skills

students develop while working on the project. In Section 7 the results obtained

during the project are presented. Finally, Section 8 addresses related work and

concludes the paper.

2. The projects in the course

Currently five projects are available for our students to take part with in the

course, three of them are about industrial application of functional programming.

In each project about 10–15 MSc and PhD students work together with 2–3 faculty

staff members. The topics of the projects need to be selected very carefully: they

should be suitable for education and also for research, so that all the different

team members benefit from the projects. The different topics are the following.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 135 — #3

Software engineering education in cooperation with industrial partners 135

Refactoring Erlang programs: As mentioned earlier, this project aims at

developing a refactoring tool for Erlang. The tool supports static program

analysis and semantics preserving program transformations [15].

Analysis of F# Programs: This project is also related to static program

analysis. The goal is to develop tools enhancing programmer’s efficiency

in F# [7].

A domain specific language for DSP: In this project a high-level domain

specific language designed for digital signal processing algorithms is being

developed, and a prototype compiler and related tools (e.g. debugger) for the

language is being implemented [8].

HypereiDoc: This project is targeted at the development of an XML based

framework supporting distributed, multi-layered, version-controlled process-

ing of epigraphical, papyrological or similar texts in a modern critical edition

[9], [2], [20], [33].

Mobile ODF: Viewing and editing documents in OpenDocument Format re-

quires the amount of resources (memory, CPU and power) that is usually not

available on mobile platforms, e.g. on mobile phones. This project develops

the technology for the management of ODF documents on phones running

Java ME: the definition of schemas that can be adapted to the capabilities of

given mobile platforms, the design of schema and document conversions and

the implementation of a supporting client-server software infrastructure.

Most of the above projects are carried out in collaboration with partner uni-

versities and companies utilizing Ceepus student exchange, Erasmus university

exchange and Erasmus industrial training student placement. Apart from the

international partners, the projects are supported also by local companies, such

as Ericsson Hungary and Morgan Stanley Hungary.

3. The curriculum

In the following sections one of the projects is described in details. This

project is aimed at developing a refactoring tool [10] for the Erlang program-

ming language [1]. Erlang is an eager, impure, dynamically typed functional pro-

gramming language developed by Ericsson. It was designed for building concur-

rent and distributed fault-tolerant systems with soft real-time characteristics, like

telecommunication systems. The Erlang language consists of simple functional

constructs extended with message passing to manage concurrency. Erlang has a



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 136 — #4

136 Zoltán Horváth, Tamás Kozsik and László Lövei

module system with export/import lists, exception handling, reflective program-

ming facilities, preprocessing mechanism to support macros and file inclusion, and

a comprehensive standard library.

Before learning Erlang, our students complete a number of courses related

to programming languages and software engineering. Some of these courses pro-

vide foundations: formal methods for the specification and synthesis of correct

sequential, parallel and distributed programs, compiler construction, algorithms

and a strong mathematical background. The students learn imperative (C++,

Ada, Java) and functional (Clean or Haskell) programming languages for three

semesters. In these courses they obtain comprehensible knowledge in the concepts

and constructs of programming languages including concurrency (Ada tasking)

and message passing (PVM), but no experience with the development of large

software systems. Other courses provide standard material on software engineer-

ing [34] – the practical part of these requires project work of small teams (with 3–4

members). These projects are at usual university exercise level, not reaching the

amount of complexity typical for an industrial project. At master level motivated

students are encouraged to take optional courses on type systems and compila-

tion of functional languages, lambda calculus, distributed and parallel functional

programming, formal semantics and different proof tools.

3.1. The Erlang course

One of these optional courses, gaining increasing popularity, is about pro-

gramming in Erlang. We started this course after the proposal of Ericsson Hun-

gary (they develop telecommunication applications in Erlang) and a successful

summer school course (held by Ericsson and Erlang Training and Consulting) at

1st Central European Functional Programming School [14]. The course is avail-

able for master students as well as for last-year bachelor students. Currently the

majority of the students taking this course have been registered for our now obso-

lete one-track 5-year master programme with an optional BSc degree obtainable

any time between the 3rd and 5th years. In the first year, 3 years ago, we had 3

participating students. Since then we have in average 20 students a year, about

the half actually completing the course.

The Erlang course focuses on the dynamic nature of Erlang, on processes and

message passing and on the “behaviour” patterns of the Erlang/Otp library. The

Erlang/Otp patterns (genserver, finite state machine, supervisor) help managing

software complexity.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 137 — #5

Software engineering education in cooperation with industrial partners 137

3.2. The RefactorErl project course

The students that turn out to be the best at the Erlang course are invited

to take part in a research and development project aiming at the design and

implementation of RefactorErl, a refactoring tool for Erlang [15]. This project

work serves as an advanced course on software engineering and programming in

the large. The students are offered 16 ETCS credits for this course. Furthermore,

most of the students continue the project as a BSc and/or MSc thesis work.

The overall size of the software that the students work on is around 30

kLOC in Erlang. Our impression from comparing this project to the Hyperei-

Doc project [9] is that it is very hard to manage a similar project with students

using languages like Java: functional programming principles really help cope

with the complexity of RefactorErl.

3.3. The RefactorErl tool in the education

Refactoring is the process of applying semantics preserving transformations

(“refactorings”) on a program in order to improve its quality or to prepare it for

forthcoming changes [10]. The use of a refactoring tool can facilitate this process

by performing tedious or error-prone activities automatically and safely. In fact

the process may involve many transformations applied by the refactoring tool, in-

terleaved with the manual edition of the program text by the programmer(s). The

refactoring tool is usually integrated into the program development environment,

and this makes it easy for programmers to apply a refactoring transformation

whenever required during the coding phase.

Interestingly, a refactoring tool is useful not only in software engineering, but

also in education. This concept was proved on 2nd Central European Functional

Programming School [17], where the first prototype of RefactorErl was used to

teach the depth of Erlang syntax and semantics as well as proper coding tech-

niques and styles for 35 students [21]. At the beginner level, a refactoring tool

can help the students understand how to improve the quality of the code in a

step-by-step manner towards a concise, elegant, functional style, and also how to

make the code suitable for the addition of new features.

4. Methodology

The R+D work on RefactorErl is an industrial-like project supported by Eric-

sson Hungary. A workplan is set up twice a year, and further communication with



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 138 — #6

138 Zoltán Horváth, Tamás Kozsik and László Lövei

the company takes place on the requirements on the tool on a weekly basis. The

second version of the tool has been applied by Ericsson successfully for reorganiz-

ing the module structure of a large body of code of a complex telecommunication

software [25], [22].

Our project team is built up of 3 faculty staff members, 2–4 PhD students

(with related PhD research topic and SE experience) and 7–12 master students,

varying over time. Changing the size and the members of the team, is due to two

reasons. Firstly, students often spend a semester abroad as exchange students,

and secondly, new students join the team in every semester. This fluctuation

can be tolerated only if the internal structure of the developed software is very

carefully designed, and the interfaces are very precisely defined and documented.

The lessons learned from the development of the first prototype of the tool [30]

showed us that the structure successful for 2–3 students became inappropriate for

involving more students. Therefore we had to redesign and reimplement the tool

from scratch. The resulting structure [16] makes it possible to define 1 person

month tasks. Even in this well-defined structure continuous team-wise and peer-

to-peer communication is required. Project meetings are organized twice a week

(about 2 hours each).

The topics of the meetings are the review of the state of the project (analysis

of the results obtained, tasks for the upcoming week), general discussion on long-

term design (so that the new team members can catch up with the concepts, the

overall structure, the interfaces and the general infrastructure of the system), in-

vention of special algorithms for more complicated tasks (which often involves the

evaluation of related work found in literature), and also regular code inspection.

Code inspection turned out to be very important: students (especially the

beginners) often make bad design decisions, and produce code of bad quality, of

bad (non-functional) style or of unacceptable efficiency. They tend to forget about

coding conventions (improperly chosen identifiers, poorly written comments). In

this process the responsibility of the project leader is high: with proper social and

psychological abilities the leader can help avoid personal conflicts, and the team

as a whole can profit a lot from many aspects.

• Members of the team develop cooperative attitude.

• The critical analysis of each others’ product not only improves quality, but

also enhances students’ skills.

• The discussions result in a coherent approach and the consistent structure of

the application.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 139 — #7

Software engineering education in cooperation with industrial partners 139

• The thorough knowledge of the inner structure ensures that the code the

students write fits well within the system, even though the students are rather

unexperienced.

• Team members can avoid code duplication.

Twice a year a progress report is assembled. This also fosters knowledge

transfer between generations of students.

5. Defining tasks for students

The development of the first version of RefactorErl showed us that team work

involving students is possible only after designing a clear modular structure for

the software. The structure of the second version, presented below, has a crucial

impact on the ability of providing reasonable tasks for students.

RefactorErl represents an Erlang program as a “program graph”: a directed,

rooted graph with typed nodes and edges. The skeleton of this graph is the ab-

stract syntax tree of the program. Apart from syntactical information, the graph

contains lexical and semantical information as well. These latter are provided as

additional (lexical and semantical) nodes and edges in the graph. For example,

each function in the program is represented as a semantic node in the graph; the

definition of the function and all the calls to the function are linked to this seman-

tic node with semantic edges. The maintenance of semantic information is useful

for boosting the checking of side conditions. Usually, the hardest part of refac-

toring is not the application of the requested transformation, but the evaluation

of the conditions that are required to hold for the refactoring to be safe. These

conditions often depend on a large amount of semantical information – which can

be efficiently picked out from the program graph. Apparently, the stored seman-

tical information, similarly to the AST, must be updated when a transformation

is applied.

In order to improve the efficiency of refactoring large programs, the con-

struction of graphs representing programs must be incremental: the graphs are

persisted in a database, so a (sub)graph representing a module needs to be re-

computed only when the module is altered manually (i.e. not with the refactoring

tool). This approach is especially useful when a large number of refactoring trans-

formations are to be applied on a program without intervening edition of the code

by programmers. This happens, for instance, before introducing a new feature



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 140 — #8

140 Zoltán Horváth, Tamás Kozsik and László Lövei

into an (otherwise fully functional) program, which may require substantial reor-

ganization of the code.

Lexical information, such as the tokens produced by the scanner, is also essen-

tial in a production-level refactoring tool. Even information about the whitespace

separating the tokens must be kept available so that the tool can preserve the lay-

out of the refactored program.

The kinds of semantic information to be gathered and maintained by the

refactoring tool depend on the transformations the tool itself supports. The Refac-

torErl tool is designed to be open-ended: it should be possible to implement fur-

ther transformations with relevant semantical analyses and add them to the refac-

toring framework. To achieve this goal, the different kinds of semantical analysis

are organized into independent modules, and these modules provide independent

sets of semantic nodes and edges for the program graph. Examples of semantic

analysis modules are the analysis of scopes, the analysis of function definitions

and calls, or the analysis of variable bindings.

The tool also includes a query language, similar to XPath, for retrieving

information from the program graph. Links of the graph can be traversed forwards

and backwards, and filtering by semantical information is also supported.

To optimize the shape of the program graph for fast information retrieval, the

syntax of the language is reflected in the tool at two levels of abstraction. In the

more abstract view there are four syntactical categories: files, forms, clauses and

expressions. Files (including header files) contain forms. Forms can be, among

others, function definitions, which are made up of one or more clauses (clauses

are basic building blocks of several compound expressions as well, such as case-

expressions). The right-hand side of a clause is a sequence of expressions and

the left-hand side of a clause contains further expressions such as patterns and

guards. The rich syntactical structure of Erlang, reflected in the close to fifty

rules of the grammar, can be abstracted into these four kinds of graph nodes.

Many details of the syntax are encoded in the types of the graph edges, forming

the less abstract syntactic view of the language.

The refactoring tool has a layered implementation. The overview of these

layers is as follows (see Figure 5).

1. The lowest level layer provides persistent storage of labelled, ordered graphs

that are valid for a given schema. Path expressions are implemented in this

layer. The current implementation uses Mnesia, the standard Dbms for Er-

lang/Otp, to persistently store the semantical graph. An arbitrary graph



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 141 — #9

Software engineering education in cooperation with industrial partners 141

Figure 1. Logical layers of RefactorErl

schema can be passed to the storage server, which uses this information to

increase the efficiency of storing and querying data.

2. The next layer provides consistent Erlang semantical graphs which can be

manipulated only through the syntax tree. This is achieved by restricting

the interface of the underlying storage layer: the same query operations are

available, but manipulations are limited, and more controlled.

3. The next layer maps high level refactoring concepts, basic operations, checks,

and transformations to low level graph queries and manipulations.

4. The highest abstraction level layer contains the high level definition of refac-

torings.

5. The interface layer provides user level access to refactorings.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 142 — #10

142 Zoltán Horváth, Tamás Kozsik and László Lövei

Semantical analysis is performed by several “analyzer plugins”, which are Er-

lang modules that concentrate on a specific type of analysis. These modules are

used through a callback interface. Semantical consistency is ensured between se-

mantical transactions. Graph manipulations start a new transaction, which means

that within a transaction consistency is no longer guaranteed, so queries are dis-

abled. The transaction must be explicitly closed. At this point the semantical

analyzer modules restore consistency, and queries are enabled again.

6. Skills developed

The RefactorErl project course improves the students’ skills in at least four

main areas. First, it advances knowledge in the functional programming para-

digm and in Erlang by requiring that students design and write large, complex

programs in this functional language. Secondly, the students must analyze the

side conditions of refactoring transformations, hence they get acquainted with

static analysis techniques which enhances their understanding of the semantics

of language constructs [26]. Thirdly, since the parser of a refactoring tool is sig-

nificantly different from that of a compiler, the students learn how to apply their

knowledge in compiler construction in flexible, creative ways. Finally, and maybe

most importantly, they get experienced in the theory and practice of software

engineering [34].

During the project work, all major skills needed in software technology are

utilized. The students have to understand an existing complex software, compre-

hend the specification of the task they have to solve, design a program component

according to existing interfaces, invent further interfaces, write, maintain, test and

document code, and present their work in a collaborative environment.

Furthermore, the students have to use tools for teamwork (versioning system,

project management tracking system, wiki, mailing list), for documentation (edoc,

LATEX) and for testing (QuickCheck, CruiseControl) [12]. They often have to

develop their own application specific test tools. Finally, they learn how to apply

a refactoring tool in the software engineering process.

A major difference of an industrial project compared to university exercises is

the amount of collective and individual responsibility in maintaining high quality

and respecting deadlines. On the other hand, the fact that the results of the

project are used in the software industry (both by Ericsson directly, and by the

Erlang community) is highly motivating.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 143 — #11

Software engineering education in cooperation with industrial partners 143

The project is about producing a refactoring tool for Erlang. This involves

the development of a refactoring-specific parser (coping with the presence of pre-

processor), and semantic analyzer modules for static analysis. Experiments have

to be carried out on the syntactic and semantic coverage of Erlang through case

studies and test suits. These experiments should point out those uses of the Erlang

language which are important in industrial applications and identify the extreme

uses with no practical significance. To achieve this, understanding and analyz-

ing huge bodies of (confidential) industrial legacy code from the point of view of

refactoring is necessary. Furthermore, the industrial code repository is also used

for measuring the efficiency and the responsiveness of the developed refactoring

tool.

All of the above tasks require research activities, such as reading literature,

algorithm design and analysis etc. Master students can obtain skills useful in an

academic career. They can continue their work as a PhD student ensuring the

continuity of knowledge transfer.

7. Results

Each student participating in the project understands the RefactorErl sys-

tem and solves a well-defined subproblem by writing 1000–3000 lines of quality

code. Such subtasks solved by students were e.g. the database back-end [31],

the first parser, concrete refactorings (such as Extract Function [35], Inline Func-

tion [5], Move Function [13], Tuple Function Arguments [29], Renaming Variable

and Function), clustering modules and functions, defining and implementing ap-

propriate fitness functions [22], the analysis and evaluation of module structure,

and an algorithm for splitting modules [25].

The RefactorErl project is not a typical project in the sense that it addresses

non-trivial problems of semantics of programming languages. The software being

developed shows many of the features of today’s applications, worth for the stu-

dents to learn: model based architecture, databases, user interface, distributed

middle tier, XML etc. However, the project also requires that the students solve

interesting problems about efficient data representation and algorithms. Even

PhD students can find appropriate research topics in this project, since the static

analysis of a dynamically typed language with concurrent and distributed facil-

ities is really challenging. The choice of the project topic is the key factor for

allowing a team structure in which a large number of PhD and master students

can cooperate. This team structure, on the other hand, ensures the continuous



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 144 — #12

144 Zoltán Horváth, Tamás Kozsik and László Lövei

knowledge transfer. Another important factor is that the industrial partner (Er-

icsson Hungary) permits the release of the product with an open-source licence

and the publication of the research results.

The research components of the project make it possible to present the results

in conference and journal papers, PhD and MSc theses, and to provide special

education environment for the most talented students (e.g. in the Scientific Stu-

dents’ Association [29], [6], [12]). Our students achieved good results at student

research competitions, and were successful in related projects at our partners in

Kent, Sheffield and London [23], [12], [24], [28].

Ericsson Hungary was able to use our tools for restructuring a large, industrial

code base [25].

8. Discussion

Project courses are often part of undergraduate curricula in software engi-

neering education. Many problems arise during the design and management of

such courses. The literature on this topic is quite broad, therefore we point out

here only some interesting issues.

Grundy [11] describes the design space for project courses (industrial or ar-

tificial topic, individual or team work, self-selected or lecturer organized teams,

the length of the project, management, assessment, supporting courses) and eval-

uates some example courses. In this design space the situation of our project

course is the following. Different teams of students work on different industrial

projects. The students may choose whether they take this course, and which

team they wish to belong to. Most of the students work at least three semesters

on the projects. The teams are managed by staff members and PhD students.

Staff members assess students by quality of process, and industry clients assess

the team by quality of product. The project course needs no supporting lectures,

since the students complete SE courses beforehand.

Many undergraduate-level project courses have to deal with a large number

of students, which requires significant human resources from the faculty staff.

Knight and Horton [19] emphasises the need for a master/apprentice relation-

ship between teacher and student, which is hard to achieve if there are too many

projects and too many students. They propose “studio labs” where some ran-

domly selected student groups make presentations to the entire class about their

recent achievements and their progress. Evaluation of these presentations by fac-

ulty (and by class members) reveal the majority of mistakes made by the class



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 145 — #13

Software engineering education in cooperation with industrial partners 145

without having to review the work of the entire class. In the project course de-

scribed in this paper, however, studio labs are not needed. Each project involves

PhD students, who are able to review the work of the undergraduate and mas-

ter students, and lead the technical discussions about design and implementation

decisions. The involvement of PhD students is made possible by selecting the

project topics in such a way that they require innovation and PhD-level research

as well as software development.

Keen, Lockwood and Lamp [18] describes a project course which is more

focussed on teaching human interaction than similar courses. They introduce the

team-of-teams approach to advance towards this goal: they build a hierarchical

team with small sub-teams, project managers and domain experts. The two-level

team structure is not required in our projects, and the role of project managers

and experts is assigned to faculty members and PhD students.

Michaelsen [27] discusses the basic criteria for successful team-based learning.

His Principle 2 (Students Must be Made Accountable) turned out to be critical

in our projects as well. On the one hand, the tasks assigned to students have

to be selected properly, and this directly affects the structure of the software

developed in the projects. On the other hand, the frequent and rather long

project meetings are necessary for monitoring the progress and evaluating the

(quantity and quality) of work of each student. Our meetings also amply address

Principle 4 (Students Receive Frequent and Immediate Feedback).

Page [32] reports on a team-based project course using ACL2. His results

are related to ours in two ways. Firstly, he finds that functional programming

is suitable, if not preferable for software engineering. Secondly, besides solving

practical SE tasks, his students succeed to learn to cope with theoretically chal-

lenging problems, such as the development of software verified with mechanical

logic.

Turcsányi-Szabó [36] describes the TeaM Lab (Teaching with Multimedia)

activities that add up from course project works, undergraduate diploma works,

PhD dissertations of students, as well as all local and international projects that

TeaM Lab participates in. These ICT projects, similarly to ours, are long-running

and provide results used in the real life: they are directly utilized in public educa-

tion. However, these projects are for informatics teacher training, and hence they

are methodology oriented, with less software engineering focus. Due to the na-

ture of the results’ potential capitalization, the projects are supported by research

grants rather than industrial partners.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 146 — #14

146 Zoltán Horváth, Tamás Kozsik and László Lövei

The European University Association (EUA) fosters the collaboration of uni-

versities and industrial partners in doctoral education [4]. Added values of the

collaboration are enhanced knowledge exchange, research with academic stan-

dards providing strategic values for industry, broadening employability of doctor-

ate holders, and reinforcement of university-business cooperation. Our project

course clearly contributes to the Open Innovation Model, and extends the goals

of EUA by preparing graduate students for the participation in collaborative doc-

toral education.

To conclude, our course is organized around projects that are running for

several years with students regularly joining and leaving the teams. The tasks for

the students have to be selected in a way that tolerates the fluctuation in the team

size and structure. The choice of the project topics is the key factor for allowing

teams in which a large number of PhD and master students can cooperate.

References

[1] J. Armstrong, R. Virding, M. Williams and C. Wikstrom, Concurrent Programming
in Erlang, Prentice Hall, 1996.

[2] P. Bauer, Designing an XML model for the HypereiDoc framework, National Scien-
tific Students’ Association Conference, Debrecen, Hungary.

[3] P. Bauer, Zs. Hernáth, Z. Horváth, Gy. Mayer, Zs. Parragi, Z. Porkoláb and
Zs. Sz. Sztupák, HypereiDoc – an XML based framework for supporting coopera-
tive text editions, Advances in Databases and Information Systems (ADBIS 2008),
Vol. 5207, Lecture Notes in Computer Science (ISSN 0302-9743), Springer, 2008,
14–29.

[4] L. Borrell-Damian, Collaborative Doctoral Education, University-Industry Partner-
ships for Enhancing Knowledge Exchange, DOC-CAREERS Project, European Uni-
versity Association, 2009.

[5] I. Bozó, Erlang Refactoring: Inline Function, BSc. thesis, Eötvös Loránd University,
Budapest, Hungary, 2008.

[6] I. Bozó and M. Tóth, Function-oriented Refactorings in Functional Languages, 1st
prize at National Scientific Students’ Association Conference, Debrecen, Hungary,
2009.

[7] P. Diviánszky et al., Infrastructure for Analysis of F# Programs, Poster, ELTE
Innovation Day, 2009.

[8] Eötvös Loránd University, Domain specific language for digital signal processing,
http://dsl4dsp.inf.elte.hu/.

[9] Eötvös Loránd University, HypereiDoc, http://hypereidoc.elte.hu/.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 147 — #15

Software engineering education in cooperation with industrial partners 147

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley, 1999.

[11] J. Grundy, A comparative analysis of design principles for project-based IT courses,
ACSE (1997), 170–177.

[12] Cs. Hoch, Testing Erlang with QuickCheck, National Scientific Students’ Association
Conference, Debrecen, Hungary, 2009.

[13] D. Horpácsi., Erlang refactoring: Move functions between modules, BSc. thesis,
Eötvös Loránd University, Budapest, Hungary, 2008.

[14] Z. Horváth (Ed.), Central European Functional Programming School, Vol. 4164,
First Summer School, CEFP 2005, Budapest, Hungary, July 2005, Revised Se-
lected Lectures, ISBN 3-540-46843-9, Lecture Notes in Computer Science (ISSN
0302-9743), Springer, 2006, 256 pages.

[15] Z. Horváth et al., Refactoring Erlang Programs, http://plc.inf.elte.hu/erlang/.

[16] Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, T. Nagy, M. Tóth, A. V́ıg and R. Király,
Building a Refactoring Tool for Erlang, Int’l Workshop on Advanced Software De-
velopment Tools and Techniques, ECOOP 2008, Paphos, Cyprus, July 8, 2008,
http://smallwiki.unibe.ch/wasdett2008/.

[17] Z. Horváth, R. Plasmeijer, A. Soós and V. Zsók (Eds.), Central European Functional
Programming School, Vol. 5161, Second Summer School, CEFP 2007. Revised Se-
lected Lectures, Lecture Notes in Computer Science, (ISSN 0302-9743), Springer,
2008, 301 pages.

[18] C. Keen, C. Lockwood and J. Lamp, A client-focused, team-of-teams approach to
software development projects, Software Engineering: Education & Practice, 1998.
International Conference, 26–29 Jan 1998, 34–41.

[19] J. C. Knight and T. B. Horton, Evaluating A Software Engineering Project Course
Model Based On Studio Presentations, 35th ASEE/IEEE Frontiers in Education
Conference, 2005.

[20] M. Kovács and Zs. Sz. Sztupák, Layered XML files, 2nd prize at National Scientific
Students’ Association Conference, Debrecen, Hungary, 2009.

[21] T. Kozsik, Z. Csörnyei, Z. Horváth, R. Király, R. Kitlei, L. Lövei, T. Nagy, M. Tóth
and A. V́ıg, Use Cases for Refactoring in Erlang, Central European Functional
Programming School (The Second Central European Summer School, CEFP 2007,
Cluj, Romania, June 23–30, 2007), Revised Selected Lectures, LNCS 5161, Springer
Verlag, 2008, 250–285.

[22] H. Köllő, Refactoring Erlang Programs: Clustering Modules, BSc. project, Eötvös
Loránd University, Budapest, Hungary, 2008.

[23] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. V́ıg and T. Nagy, Refac-
toring Erlang programs, The Proceedings of 12th International Erlang/Otp User
Conference, Stockholm, Sweden, 2006, 10 pages, http://www.erlang.se/euc/06/.

[24] H. Li, S. Thompson, Gy. Orosz and M. Tóth, Refactoring with Wrangler, updated,
Proceedings of the 2008 SIGPLAN Erlang Workshop, ISBN: 978-1-60558-065-4,
ACM, 2008, 61–72.



“tmcs-Horvath˙Kozsik˙Lovei” — 2010/4/13 — 9:49 — page 148 — #16

148 Z. Horváth, T. Kozsik and L. Lövei : Software engineering education. . .

[25] L. Lövei, Cs. Hoch, D. Horpácsi, H. Köllő, T. Nagy and A. V́ıg, Refactoring
Module Structure, Proceedings of the 2008 SIGPLAN Erlang Workshop, ISBN:
978-1-60558-065-4, ACM, 2008, 83–89.

[26] L. Lövei, Z. Horváth, T. Kozsik, R. Király and R. Kitlei, Static rules for vari-
able scoping in Erlang, Vol. 2, Proceedings of the 7th International Conference on
Applied Informatics, 2008, 137–145.

[27] L. K. Michaelsen, Getting Started with Team Based Learning, Team-Based Learn-
ing: A Transformative Use of Small Groups, Greenwood Publishing Group, 2002,
27–52.

[28] T. Nagy and A. V́ıg, Erlang Testing and Tools Survey, Proceedings of the 2008
SIGPLAN Erlang Workshop, ISBN: 978-1-60558-065-4, ACM, 2008, 21–28.

[29] T. Nagy and A. V́ıg, An Erlang refactor step: Tuple function arguments, 2nd prize
at National Scientific Students’ Association Conference, Miskolc, Hungary, 2007.

[30] T. Nagy and A. V́ıg, Erlang refactor tool, Master thesis, Eötvös Loránd University,
Budapest, Hungary, 2007.

[31] T. Nagy and A. V́ıg, Storing Erlang source code in database, BSc. thesis, Eötvös
Loránd University, Budapest, Hungary, 2006.

[32] R. Page, Engineering software correctness, Journal of Functional Programming 17,
no. 6 (November 2007), 675–686.

[33] Zs. Parragi and Zs. Sz. Sztupák, Digital representation, presentation and collabora-
tive edition of philological texts, 3rd prize at National Scientific Students’ Associa-
tion Conference, Debrecen, Hungary, 2009.

[34] I. Sommerville, Software Engineering, (7th Edition) (International Computer Sci-
ence Series), Addison Wesley, 2004.

[35] M. Tóth, Erlang Refactoring: Extract Functions, BSc. thesis, Eötvös Loránd Uni-
versity, Budapest, Hungary, 2008.

[36] M. Turcsányi-Szabó, Blending projects serving public education into teacher train-
ing, Education for the 21st Century - Impact of ICT and Digital Resources, IFIP
19th World Computer Congress, TC-3 Education, IFIP series Vol. 210, Springer,
2006, 235–244.

[37] Ceepus Network CII–HU–19 International Cooperation in Computer Science,
http://aszt.inf.elte.hu/~ceepush81/.

ZOLTÁN HORVÁTH, TAMÁS KOZSIK and LÁSZLÓ LÖVEI

DEPARTMENT OF PROGRAMMING LANGUAGES AND COMPILERS

EÖTVÖS LORÁND UNIVERSITY

BUDAPEST

HUNGARY

E-mail: hz@inf.elte.hu

E-mail: kto@inf.elte.hu

E-mail: lovei@inf.elte.hu

(Received October, 2009)


