
“tmcs-gregorics” — 2010/4/12 — 23:41 — page 89 — #1

8/1 (2010), 89–108

Programming theorems on

enumerator

Tibor Gregorics

Abstract. This paper deals with the examination of the programming patterns best
known by programmers: the programming theorems. It is a significant issue that in
what way these patterns can be formulated in order to solve a relatively broad spec-
trum of problems using a small number of patterns. In this paper, the well known
programming theorems are applied to the processing of enumerators. To this end, the
robustness of patterns gained this way will be presented, and it will be also pointed out
how the programs thus constructed can be implemented in the modern object-oriented
programming environments: in language C++, Java and C#.

Key words and phrases: programming pattern, analogous programminng, programming
theorem, enumerator, iterator.

ZDM Subject Classification: P50.

1. Introduction

The fundamental aim of software engineering is the creation of products of

proper quality. To ensure this, various technologies, regulations and standards are

applied. Among these, there have a major role the so called programming patterns

which give a guaranteed-quality solution to each part-problem revealed during

software production. Several groups of programming patterns are known: some

help testing or generating test data, others support implementation or encoding

[1], [3], and many more assist program design. These latter contain the so called

design patterns but also the algorithm patterns to solve small sub problems: the

so called programming theorems [7].

Copyright c© 2010 by University of Debrecen

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 90 — #2

90 Tibor Gregorics

A programming theorem consists of a general problem and an algorithm which

solves it. If a concrete problem is an instance of the general one, then the solution

of the concrete problem will be given from the appropriate conversion of the algo-

rithm of the programming theorem [6]. This technique guarantees only best the

correctness of the generated solution if the problems are phrased pro forma and

it can be shown that the concrete problem, which is to be solved, is a special case

of the general problem of the programming theorem. After the differences are

revealed between the concrete and general problem, they should only be substi-

tuted to the algorithm of the programming theorem [5]. This technique is called

analogous programming [4], [7].

The main condition of the usability of this method is that the programming

theorems are not that numerous, thus necessarily general; meanwhile, not so

abstract, hence fitting to concrete problems. These theorems are well known

in the programming methodology: summation, counting, maximum selection,

linear searching and selection. The only difference is that; for some, the problems

are related to arrays; for others, to functions mapping from an integer interval.

In this paper, the programming theorems which are related to enumerators are

introduced.

2. Enumerator

If a piece of data can be represented by a group of elementary values (e.g.

sets, arrays, or sequences, etc.), then its processing means the processing of its

elements. One of the most important properties of this type of data is that

their elementary values can be got one by one. This kind of data-type is called

the enumerable (iterated) type; the instance of it is called the collection or the

container. The enumeration of a collection means the ability to point out the first

element, to step to the next one, to refer to the current one, and to ask if there

is the end of the enumeration.

Not only can the elements of a collection be enumerated, but also, for exam-

ple, the proper divisors of an integer or the integers of an interval. It can be seen

that enumeration may also relate to non-enumerable types.

The enumerating operators do not belong to the data, the elements of which

are enumerated. It would be strange if an integer, the proper divisors of which

are needed, has got operators such as “step to the first proper divisor”, “step to

the next proper divisor”, “take the current proper divisor” and “ask if there is the

end of the enumeration”. Although, an integer interval has only got operators to

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 91 — #3

Programming theorems on enumerator 91

ask the limits of the interval; in order to enumerate its element, a special object,

the index is needed. It is because the enumeration operators always bind to an

individual object that refers to the data, the elements of which are wanted to be

enumerated. This object is the enumerator (or iterator). It can step on the first

element of the enumeration; then, on the next one, it can give back the current

element and check if the enumeration has finished. Hence the enumerator always

includes the enumerating operators: First(), Next(), Current() and End().

2.1. Concept of enumerator

The enumerator is the object that can produce – one by one – the elements

of an enumerable data such as an array, a set, a sequential file or an integer

providing its proper divisors. The enumerator can be viewed as a finite sequence

of elements.

Let the enumerator be notated by t. The enumeration begins with the calling

of the operator t.First()1. This operator steps on the first element of the enumer-

ation if an element exists at all. After this, the enumerator’s state is “launched”.

Then the operator t.Next() moves to the other elements of the enumeration. The

operator t.Current() gets the current element that the enumeration has stepped

on. The condition of executing the operators Next() and Current() is that the

enumeration has not ended yet. This can be checked with the operator t.End()

which replies with a logical true if the enumeration is over. Obviously, the enu-

meration must not be infinite to ensure the occurrence of this situation.

The effects of these operators are not always defined. It is not generally

known; for example, what the effect of the operators t.Next(), t.Current() and

t.End() is if they are executed before the operator First(), or what the effect

of the operators t.Next() and t.Current() is after the enumeration ended. It is

similarly not defined what should happen if the operator t.First() is executed for

a second time.

An object can be named as enumerator if its type implements the operators

First(), Next(), End() and Current(). The enor(E) denotes the enumerator-

type which can traverse the finite sequence of set E. In the specification of

problems, where enumerators are used, the enumerator can be referred to as a

finite sequence; ti is the ith element of such a sequence and |t|− is the length of it.

In reality, the enumerator is not represented with a sequence. (Neither even

if it is the enumerator of a sequence-structured piece of data.) Of course in the

1In this paper, the object-oriented style is used.

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 92 — #4

92 Tibor Gregorics

representation of the enumerator, there is some reference to the data which is

wanted to be enumerated. (This could be a single natural number if its divisors

should be generated; an array, a sequential input file, a set, or else a multiplicity

set if their elements are required; or a graph, the nodes of which are needed to

be traversed with any strategy so as to come by the values contained there.)

Besides this, the representation may also contain other kind of components which

support the enumeration. In the course of the enumeration, there is always an

actual elemental value which can be got at that exact moment. In case of the

enumeration of the data of a one-dimension array; that is, a vector, an index-

variable is sufficient; in case of a sequential input file, the element last read out

should be restored, so does the fact whether the last read-out was successful; in

case of the enumeration of a nature number’s divisors; for instance, the last given

divisor is required.

2.2. Enumeration

The processing of an enumerator means that an activity is executed on enu-

merated elements. This activity may be a summation, a counting, or a maximum

selecting, etc.

The values given back by the enumerator are usually processed in some way.

This procession can be various; let’s nominate it as the general P (e) which means

an arbitrary procession of an e elemental value. No further explanation is needed

why the enumeration-based procession is executed by the algorithm-scheme given

below. It is noted that since the number of the enumerable elements is finite, this

procession terminates certainly in a finite number of steps.

t.First()

¬t.End()

P(t.Current())

t.Next()

2.3. Famous enumerators

Some important enumerators will be hereinafter examined; the representation

of which – except for one – is based on some famous iterated type. It will be

discussed what the implementation of the operations First(), Next(), End() and

Current(), which ensure the enumeration, is. It will be an important part of

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 93 — #5

Programming theorems on enumerator 93

the examinations to show how the algorithm-scheme presented above doing the

general procession is modified in case of a concrete enumerator-type object.

Let’s see first the integer-interval enumerator that can enumerate the

integers from m to n one by one. Certainly, other (backward, two by two, etc.)

interval enumerators can be constructed. The classical one is particular because

the popular versions of programming theorems are used to state over interval

(or the domain of an array). It proves that those programming theorems can be

derived from the more general ones on enumerator.

The classical enumerator of an interval can be represented by the limits of the

interval (m and n) and the index i. The variable i contains the current element of

the enumeration, so it implements the operator Current(). The operator First()

is the assignment i := m; Next() is the assignment i := i+1. The condition i > n

substitutes the operator End(). (The operator First() can be executed iteratively;

it starts again the enumeration. All operators can always be executed.)

Now, the processing of an interval-enumerator can be compounded from the

general algorithm-scheme and from the implementation of the operators of the

interval-enumerator. Certainly, this algorithm can be also written in form of a

counter loop.

i := m

i ≤ n

P (i)

i := i + 1

or
i = m . . . n

P (i)

It is easy to verify that the operators (i := n, i := i − 1, i < m) implement

the backward enumerator over the interval m . . . n, and the operators (i := m,

i := i + 2, i > n) implement nevertheless the enumerator two by two.

It is very simple to make a sequence enumerator. It can be represented

by the sequence that is wanted to be enumerated, and by an index. The index i

points the current element of the sequence s, so the expression si implements the

operator Current(). In the classical traversal of the sequence, the operator First()

is the assignment i := 1; Next() is the assignment i := i+1. The condition i > |s|

substitutes the operator End(). (The operator First() can be executed iteratively;

it starts again the enumeration. The operator Current() is only defined during

the traversal while the others are always.)

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 94 — #6

94 Tibor Gregorics

Using these remarks, here is the processing of the sequence.

i := 1

i ≤ |s|

P (si)

i := i + 1

or
i = 1 . . . |s|

P (si)

The vector enumerator is very similar to the sequence enumerator. The

only difference between them is that the element of a vector can be indexed by

the interval [m . . . n] and not by interval [1 . . . |s|]. Its processing algorithm is in

form of a counter loop:

i := m

i ≤ n

P (v[i])

i := i + 1

or
i = m . . . n

P (v[i])

A matrix is a vector of vectors. The inside vectors are named as rows, ele-

ments of the ith row are indexed from 1 to m(i) in which m(i) is the number of

the elements of the ith row. Frequently m(i) is equal to the same m for all i. The

rows are indexed from 1 to n in which n is the number of the rows. The row-

by-row traversal of a matrix can be solved by only one index but the two-index

version is more popular.

In the two-index version the matrix enumerator is represented by a matrix

(a) and two index-variables (i and j). One index (i) is used to go through among

the rows of the matrix, the other (j) to go through the elements of the actual

row. During the go-through, a[i, j] will be Current(). First, a[1, 1] should be

stepped on, so the operator First() is implemented by i, j := 1, 1. Grabbing

the next element, if the index j has not yet reached the end of the actual row,

it has to be increased by one. In contrast, the index i is increased by one to

step on the next row; the index j is situated at the beginning of this row. To

sum up, IF (j ≤ m(i) : j := j + 1; j > m(i) : i, j := i + 1, 1) implements the

operator Next(). The term End() is substituted by i > n. The matrix-procession

is different to the previous ones but the following two-loop algorithm is much

more known in practice.

i = 1 . . . n

j = 1 . . .m(i)

P (a[i, j])

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 95 — #7

Programming theorems on enumerator 95

A sequential input file is a sequence that has got only one operator: it can

read and remove its first element. This reading can be notated by st, e, f : read

where st gets the status of reading, e contains the element read from the file

(undefined if the file is empty) and f is the sequential input file. If the file is not

empty, the reading is successful and its status (st) is “norm”, otherwise “abnorm”.

The enumerator of a sequential input file can be represented by the file (f),

the current element (e) that has been read recently from the file, and the status

(st) of the recent reading. The enumeration of the sequential input file reads over

the elements of the file. The operator First() is the first st, e, f : read, and the

additional readings substitute the operator Next(). The operator Current() gives

back the value of e. The End() is false while the status st is norm. All operators

are well-defined outside the enumeration.

st, e, f : read

st = norm

P (e)

st, e, f : read

The representation of the enumerator of the set h does not require special

data; its operators can be implemented by the operators of the set. Obviously, we

cannot speak about the order of elements in a set but the order of their enumer-

ation. The value of the operator Current() can be produced by the deterministic

element-selection: mem(h). To read the first element, nothing is needed to be

done, so the operator First() is the empty statement. The operator Next() deletes

the element selected out from the set before: h := h−{mem(h)}. The implemen-

tation of this operator is simpler than the general h := h−{e} because mem(h) is

surely in set h. The End() will be true if the set is empty. The effect of operators

Current() and Next() are not defined if the set is empty.

h 6= ∅

P (mem(e))

h := h − {mem(e)}

3. Programming theorems on enumerator

Now we introduce the general programming theorems.

All of them have got an enumerator as input data. The description of pro-

gramming theorems consist of three parts: the text of the problem to be solved,

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 96 — #8

96 Tibor Gregorics

its formal specification and the solving algorithm. The formal specification con-

tains the state space, the precondition and the post condition. The state space,

A, includes the data (variables) relevant to the problem with their types. The

precondition, Pre, expresses that the input is given and contains the constraint

(if any) the input must satisfy. The post condition, Post, determines the value of

the output variables.

3.1. Summation

Problem: There is given an enumerator, the elements of which are in the set E,

and a function f : E → H , where H is an arbitrary set with some associative

adding operation, + : H × H → H , and 0 is a neutral element of this operation.

Compute the sum of the values that the function f maps from the elements of t,

i.e.
∑|t|

i=1 f(ti)! (If t is empty, this sum is equal to zero.)

Specification:2
A = (t : enor(E), s : N)

Pre = (t = t′)

Post =

(

s =

|t′|
∑

i=1

f(t′i)

)

Algorithm:

s := 0

t.First()

¬t.End()

s := s + f(t.Current())

t.Next()

3.2. Counting

Problem: There is given an enumerator, the elements of which are in the set E,

and a condition β : E → L. How many enumerated elements satisfy the condition?

Specification:
A = (t : enor(E), c : N)

2Here we use the general formal specification where A is the statespace, Pre is the precondition,

Post is the post condition of the problem.

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 97 — #9

Programming theorems on enumerator 97

Pre = (t = t′)

Post =

(

c =

|t′|
∑

i=1
β(t′

i
)

1

)

Algorithm:

3.3. Maximum selecting

Problem: There is given an enumerator, the elements of which are in the set E,

and a function f : E → H where H is a well ordered set. We suppose that the

enumerator is not empty. Which enumerated element is the greatest?

Specification:

A = (t : enor(E), max : H, elem : E)

Pre = (t = t′ ∧ |t| > 0)

Post =
((

max = f(elem) =
|t′|

max
i=1

f(t′i)
)

∧ ∃i ∈ [1 . . . |t′|] : t′i = elem
)

where [1 . . . |t′|] = [1, |t′|] ∩ N

Algorithm:

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 98 — #10

98 Tibor Gregorics

3.4. Conditional maximum searching

Problem: There is given an enumerator, the elements of which are in the set E,

a function f : E → H where H is well ordered set, and a condition β : E →

L. Which enumerated element is the greatest among them that satisfies the

condition β?

Specification:

A = (t : enor(E), l : L, max : H, elem : E)

Pre = (t = t′)

Post =
(

(l = ∃i ∈ [1 . . . |t′|] : β(t′i))∧

(

l → max = f(elem) =
|t′|

max
i=1
β(t′

i
)

f(t′i)
)

∧ ∃i ∈ [1 . . . |t′|] : t′i = elem)
)

Algorithm:

3.5. Selection

Problem: There is given an enumerator, the elements of which are in the set E,

and the condition β : E → L. There exists at least one element that satisfies this

condition. Let us give the first one!

Specification:

A = (t : enor(E), elem : E)

Pre = (t = t′ ∧ ∃i ∈ [1 . . . |t|] : β(ti))

Post = (∃i ∈ [1 . . . |t′|] : t′i = elem ∧ β(elem) ∧ ∀ j ∈ [1 . . . i − 1] : ¬β(t′i))

Algorithm:

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 99 — #11

Programming theorems on enumerator 99

t.First()

¬β(t.Current())

t.Next()

elem :=t.Current()

3.6. Linear searching

Problem: There is given an enumerator, the elements of which are in the set E,

and the condition β : E → L. Let us give the first element of the enumeration of

t that satisfies the condition β.

Specification:

A = (t : enor(E), l : L, elem : E)

Pre = t(= t′)

Post = ((l = ∃i ∈ [1 . . . |t′|] : β(t′i))∧

(l → ∃i ∈ [1 . . . |t′|] : t′i = elem ∧ β(elem) ∧ ∀ j ∈ [1 . . . i − 1] : ¬β(t′i)))

Algorithm:

l := false

t.First()

¬ l ∧ ¬t.End()

elem :=t.Current()

l := β(elem)

t.Next()

3.7. Computing of recursive function

Problem: There is given an enumerator, the elements of which are in the set E,

the k-order m-basic (positive integer k, integer m) function f : Z → H where

f(i) = h(ti, f(i− 1), . . . , f(i− k)) for all i ≥ 1, h is a function E ×Hk → H , and

f(m − 1) = em−1, . . . , f(m − k) = em−k, where em−1, . . . , em−k ∈ H . Compute

the value of the function f in the argument |t|!

Specification:
A = (t : enor(E), y : H)

Pre = (t = t′)

Post = (y = f(|t′|))

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 100 — #12

100 Tibor Gregorics

Algorithm:

y, y1, . . . , yk−1 := em−1, em−2, . . . , em−k

t.First()

¬t.End()

y, y1, y2, . . . , yk−1 := h(t.Current(),y, y1, . . . , yk−1), y, y1, . . . , yk−2

t.Next()

4. Conclusions

An opinion of the usability of the programming theorems can be formed in

two respects.

One is the robustness; that is, that the theorems are general enough to assist

in solving many problems. The number of the theorems should not however be too

big; at the same time, their phrasing should not be too abstract. The number and

the level of abstraction of the programming theorems have already passed a lot

of tests. Indeed a small set of similar programming theorems makes it possible to

solve a huge set of small practical problems with analogous programming [6], [7].

Here it should only be justified whether their variants on enumerators are not too

broad, which are no doubt more general than the ones on arrays or on functions

mapping from interval; these are better known in the programming society.

Second is that how the programming environment can fit to our programming

theorems, that is, how the abstract programs made with programming theorems

on enumerator can be translated into a programming language.

Now, we are going to examine how our programming theorems can be applied

in the program designing and how they can be implemented on some well-known

programming languages.

4.1. Designing

When a problem shows the signs of summation, counting or maximum se-

lecting, etc., an appropriate programming theorem can be applied. The question

is that what kind of enumerator can traverse the elements that the program-

ming theorem processes. If this enumerator is detected, it is enough to define its

operators (First(), Next(), End() and Current()).

The solution of those problems in which the elements of a well-known collec-

tion should be processed is very simple. The general schema of the appropriate

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 101 — #13

Programming theorems on enumerator 101

programming theorem is needed, its function (or functions) should be defined, and

the First(), Next(), End() and Current() should be substituted with the operators

of the concrete enumerator. For example: “Which is the maximum element of a

non-empty set?” (maximum selecting over a set), “How many words beginning

with the letter ‘a’ are there in a text?” (counting over a sequential file), “Search

a positive element in a matrix” (linear searching over matrix), or “Select the red

cars from the file of different vehicles” (summation over sequential file).

The problems which need a special enumerator verify much more the robust-

ness of the programming theorems on enumerator. Let’s see the next example:

“Compute the sum of the prim divisors of a natural number.”

This problem can be solved as a conditional summation over the interval

2 . . . n, in which the condition checks whether an element is a prim divisor of the

number n or not.

A = (n : N, sum : N)

Pre = (n = n′)

Post =
(

Ef ∧ sum =

n
∑

i=2
i|n′∧prim(i)

i
)

Another and better solution is that if an enumerator is imagined that can tra-

verse all prim divisors of the number n. In this case, a summation on enumerator

solves the problem in which E = H = N and f(e) = e for all number e.

A = (t : enor(N), sum : N)

Pre = (t = t′)

Post =
(

Ef ∧ sum =

|t′|
∑

i=1

t′i

)

sum := 0

t.First()

¬t.End()

sum := sum+t.Current()

t.Next()

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 102 — #14

102 Tibor Gregorics

If the number n is at least 2, then its smallest prim divisor can be found by a

selection programming theorem starting from 2 and searching for the first divisor.

Note this activity by d := spd(n). It is sure that d is a prim. This is the operator

t.First().

The next prim divisor can be produced (by the operator t.Next()) using this

d := fpd(n) but before this, the search for the number n must be reduced. It

should be divided by the prim divisor found before as many times as it can be

divided. The operator t.Current() gives back the value of d, and the operator

t.End() will be true if n = 1. The enumerator is represented by the number n

and d.

t ∼ n, d : N

t.First() ∼ d := spd(n)

t.Next() ∼ LOOP (d|n; n := n/d); d := spd(n)

t.End() ∼ n = 1

t.Current() ∼ d

The final solution:

sum := 0;

d := spd(n)

n > 1

sum := sum + d

d|n

n := n/d

d := spd(n)

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 103 — #15

Programming theorems on enumerator 103

There often occur problems in which a programming theorem should be used

in the way that the solving program stops if a certain condition comes true.

For instance, if it is examined in an array whether there are at least three even

numbers or not, then it is a counting that should not go through all the elements

of the array if the result reaches three. For such a problem, the enumerator is

needed in which only the operator End() differs from that of the array’s famous

enumerator.

Similarly, those problems can be easily handled in which there is needed

a reverse traversal than usual. For example, an array’s last element with that

attribute is searched.

In general, those problems are difficult in which the groups of a collection’s

elemental values are to be processed. For example, the longest word of a text

file is searched. In this case, the enumerator should not traverse the characters

but the length of the words. The operators First() and Next() search for the

beginning of the first and the next word, respectively; if such exists, then it also

searches for its end and it computes its length; finally, the Current() gives back

this length. The operator End() turns true if no more words are found.

The solution of the problems of merging also requires a unique enumerator.

Let’s see this example: “A sequential input file is given containing n pieces of

integers; all of them are strictly monotone increasing ordered.” Here an enumer-

ator is needed which enumerates all the integers from the files so that it gives a

number at only once and that it also notes that a number belongs to which file.

4.2. Implementation

The algorithms created with the assist of the programming theorems on enu-

merator can be with ease implemented in the object-oriented programming lan-

guages. The reason is that the type of an enumerator can be easily described

by a class. For example, let’s examine the realisation in C++ of the enumera-

tor that can traverse a double queue represented by a two-direction chained list

without the implementation of operators Push
−

front(), Pop
−

front(), Push
−

back(),

Pop
−

back().

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 104 — #16

104 Tibor Gregorics

class Sequence
{
private:

struct Node
{

int val;
Node *next;
Node *prev;
Node(int c, Node *n, Node *p): val(c), next(n), prev(p){ };

};
Node *first;
Node *last;
int iteratorCount;

public:
void Push

−
front(int e);

int Pop
−

front();
void Push

−
back(int e);

int Pop
−

back();
friend class Iterator;

class Iterator
{
public:

Iterator(Sequence *s):seq(s),current(NULL)
{++(seq → iteratorCount);}

∼ Iterator() {- -(seq → iteratorCount);}
int Current()const {return current →val;}
void First() {current = seq → first;}
bool End() const {return current = NULL;}
void Next() {current = current → next;}

private:
Sequence *seq;
Node *current;

};
Iterator CreateIterator(){return Iterator(this);}

};

Many times we do not need a unique enumerator like before. For example

the enumerators of the famous collections have been ready in the Standard Tem-

plate Library (STL) of C++. If an algorithm, that can solved a problem, is

derived from our programming theorem which processes famous collections the

algorithm is implemented simply. Bjarne Stroustrup wrote in [9] that the itera-

tors (means enumerators) are the screws that fasten together the collections and

the algorithms.

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 105 — #17

Programming theorems on enumerator 105

In STL of C++ the standard collections have here got a begin() and an end()

method, with the assist of which the traversal of the collection’s elements is solved.

In the program-passage shown below, the vector is a special collection-template,

the elements of which (so be integers this time) are wanted to be enumerated

in order to be subjected to the operation of a function void f(int). So the below

code-type (based on [9]) is needed:

vector〈int〉 coll;
. . .
vector〈int〉::iterator it = coll.begin();
while(it!= coll.end())
{

f(*it);
++it;

}

The same can be applied in Java language to the collection List〈Integer〉 and

to a function void f(Integer) [2]. Here the enumerator (its type is Iterator〈Integer〉)

can be created by the method iterator() and it has got the methods hasNext() and

next(). These correspond to the operators First(), Next(), Current(), and End().

List〈Integer〉 coll = new List〈Integer〉();
. . .
Iterator〈Integer〉 it = coll.iterator();
while(it.hasNext())
{

f(it.next());
}

The C# [8] ensures language elements very similar to Java. The class imple-

mented the interface IEnumerable contains the operator GetEnumerator() which can

create an enumerator with the methods int Current(){get;}, bool MoveNext() and

void Reset().

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 106 — #18

106 Tibor Gregorics

List〈int〉 coll = new List〈int〉();
. . .
IEnumerator〈int〉 it = coll.GetEnumerator();
it.Reset();
while(it.MoveNext())
{

f(it.Current);
}

The C# has got two further language elements which make the application

of the enumerators and the definition of the unique enumerators very simple.

With the assist of the loop foreach, enumeration can be applied (either a unique

enumerator or a famous one) without so much as the enumerator object should be

indirectly created, or else its methods should be indirectly called. The program-

part given above can be likewise written down on the condition that the function

f does not change the collection. (This kind of loop foreach can be found in C++

and Java, too.)

List〈int〉 c = new List〈int〉();
. . .
foreach(int e in coll)
{

f(e);
}

If a unique enumerator to an object is wanted to be created in C#, then the

class of the object should implement the interface IEnumerable. This happens by

the definition of the method GetEnumerator(). In the realisation of this method,

the elements to be traversed can be created one by one and are given with the

assist of the order yield return. For example, let’s have a C# program-part of

the solution of the problem “Define the summation of the prim divisors of an n

positive integer.”

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 107 — #19

Programming theorems on enumerator 107

class PrimDivisor : IEnumerable
{

static void Main(string[] args)
{

int sum = 0;
PrimDivisor ds = new PrimDivisor(int.Parse(Console.ReadLine()));
foreach (int p in ds)
{

sum + = p;
}
Console.WriteLine(”The sum of prim divisors: {0} ”, sum);
Console.ReadKey();

}
private int n;
private int d;
public PrimDivisor(int i)
{

n = i > 0 ? i : 1;
}
IEnumerator IEnumerable.GetEnumerator()
{

while (n ! = 1)
{

spd();
yield return d;
n = n / d;

}
}
int spd()
{

d = 2;
while (n % d ! = 0) ++d;

}
}

“tmcs-gregorics” — 2010/4/12 — 23:41 — page 108 — #20

108 Tibor Gregorics : Programming theorems on enumerator

References

[1] A. Alexandrescu and H. Sutter, C++ Codings Standards: 101 Rules, Guidelines,

and Best Practices, 1st Edition, ISBN 0321113586, Pearson Education In., Addison
Wesley Professional, 2005.

[2] E. Angster, Objektumorientált tervezés és programozás, 4KÖR Bt, 2004 (in Hungar-
ian).

[3] K. Beck, Implementation Patterns, 1st Edition, ISBN 0321413091, Pearson Educa-
tion In., Addison Wesley Professional, 2008.

[4] Sz. Csepregi, A. Dezső, T. Gregorics and S. Sike, Automatic Implementation of Ser-

vice Required by Components, PROVECS’2007 Workshop, ETH Technical Report,
2007, 567.

[5] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, 1973.

[6] Á. Fóthi, Bevezetés a programozáshoz, ELTE Eötvös Kiadó, 2005 (in Hungarian).

[7] T. Gregorics and S. Sike, Generic algorithm patterns, Proceedings of Formal Methods

in Computer Science Education FORMED 2008, Satellite workshop of ETAPS 2008,
Budapest, March 29, 2008, 141–150.

[8] J. Sharp, Visual C# 2005 Step by Step, Microsoft Press, 2005.

[9] B. Stroustrup, The C++ Programming Language, 2001.

TIBOR GREGORICS

ELTE, FACULTY OF INFORMATICS

DEPT. SOFTWARE TECHNOLOGY AND METHODOLOGY

1117 BUDAPEST PÁZMÁNY PÉTER SÉTÁNY 1/C

E-mail: gt@inf.elte.hu

(Received June, 2009)

