
“tmcs-csenki” — 2010/4/12 — 23:38 — page 73 — #1

8/1 (2010), 73–87

Difference lists in Prolog

Attila Csenki

Abstract. Prolog is taught at Bradford University within the two-semester module Sym-
bolic and Declarative Computing/Artificial Intelligence. Second year undergraduate stu-
dents are taught here the basics of the functional and the logic programming paradigms,
the latter by using the Linux implementation of SWI Prolog [6]. The topic ‘Difference
lists’ is mentioned in traditional textbooks such as [2] and [5] but it was felt that the
available texts do not quite serve our purposes. We present here a lecture handout
and a laboratory sheet for the teaching sessions on Difference lists. It is believed that
the lectures and lab sessions together with the handouts shown here are a gentle, self-
contained and reasoned introduction into the topic. The figures here shown to illustrate
the concepts are considered a special feature of the handouts which in this form do not
seem to be well known.

Key words and phrases: teaching of Prolog, difference lists, computer science education.

ZDM Subject Classification: P45, P55, Q65, Q85.

Prolog is taught in the School of Computing, Informatics and Media at Brad-

ford University within the two-semester module Symbolic and Declarative Com-

puting/Artificial Intelligence (SDC/AI). There are in each semester two lectures

and a two hour lab session per week for twelve weeks. The event is for second year

undergraduate students of Computer Science and related subjects. Within the

module, students are taught the basics of the functional and the logic program-

ming paradigms, the latter by using the Linux implementation of SWI Prolog [6].

‘Difference lists’ offer a way of concatenating lists in constant time, whereas

the time required by the usual method with append is proportional to the lists’

length. The technique relies on the availability of built-in unification in Prolog.

Copyright c© 2010 by University of Debrecen

“tmcs-csenki” — 2010/4/12 — 23:38 — page 74 — #2

74 Attila Csenki

The system appears at the user level to be dealing with differences of lists; this

is, of course, a mere working hypothesis which, however, turns out to be most

useful.

The handouts explain the concepts and are illustrated with figures of the

predicates manipulating differences of lists. By the time this topic is addressed,

students will have been taught the accumulator technique.1

A recent, in-depth treatment of difference lists is in [4], a web resource which is

available to students free of charge. The more advanced, research-level application

of the technique in [3] reinforces the importance of knowing about it.

Lecture handouts

I describe here various implementations of list concatenation and list reversal

based also on difference lists. (This is essentially a record of last week’s lectures:

week 14.) Starting on page 82, I then describe this week’s (week 15) lab tutorials:

implementations of flattening lists and some other issues on difference lists.

Owing to the availability of unification in Prolog, there is a useful technique

that allows predicates involving certain list operations to be implemented very

efficiently. Because at the conceptual level the technique appears to be manipu-

lating ‘differences of lists’, it is known as the difference list technique.

Implementations of list concatenation

Suppose we want to concatenate the two lists [a,b,c] and [d,e] to give us
the new list [a,b,c,d,e]; in other words, we want to append the list [d,e] to
the list [a,b,c]. We can do this by the built-in predicate append/3 as follows:

?- append([a,b,c],[d,e],L).

L = [a, b, c, d, e]

We use Prolog’s listing/1 to display the definition of append/3 :

?- listing(append/3).

append([], A, A).

append([A|B], C, [A|D]) :- append(B, C, D).

Due to its recursive definition, append/3 will be invoked four times when running

our example. In general, the depth of the proof tree will be proportional to the

length of the list in the first argument.

1Exercise 4 is intended to interrelate these two topics.

“tmcs-csenki” — 2010/4/12 — 23:38 — page 75 — #3

Difference lists in Prolog 75

We want to explore a computationally more economical approach to the prob-

lem of list concatenation. Let us place in the database the following one-line

definition of app dl1/4 :2

app_dl1(A,B,B,A).

Let us carry out the following experiment:

?- app_dl1([a,b,c|X],X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

We have accomplished the intended append operation once again! Let us examine

how. The following unifications have taken place:

1. A is unified with [a,b,c|X].

2. B is unified with X.

3. B is instantiated to [d,e].

4. A is unified with Z.

It is easily seen that the net result of 1–4 is that Z is instantiated to [a,b,c,d,e].

We now define a new predicate app dl2/3 which is slightly different but still

equivalent to app dl1/4 :

app_dl2(A-B,B,A).

(We have chosen, for reasons to be explained soon, to reduce the arity by one
by ‘merging’ the first two arguments of app dl1/4 to a hyphenated term.3) Let
us see how app dl2/3 behaves:

?- app dl2([a,b,c|X]-X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

2Notation: app stands for append ; dl stands for difference list ; and, 1 indicates that it is the

first version – other (improved) versions soon to follow.
3We could have chosen some other operator for the term in the first argument of the new

predicate; for example, the same effect is achieved by:

:- op(50,xfx,&).

...

app dl3(A&B,B,A).

The first line – a directive – declares & as an infix operator of precedence 50. In the first

argument of app dl3/3 a term A&B replaces the former A-B. The response will be as before:

?- app dl3([a,b,c|X]&X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

If the hyphen (-) is chosen to denote difference lists, however, no operator declaration is required

since it is a Prolog built-in.

“tmcs-csenki” — 2010/4/12 — 23:38 — page 76 — #4

76 Attila Csenki

We get the earlier response since the unification steps carried out are as before.

The hyphen notation chosen in app dl2/3 is more customary, however, and it

lends itself to the following interpretation.

The term [a,b,c|X]-X is interpreted as a representation of the
list [a,b,c] in difference list notation. The variable X stands
for any list. If we unify this term with Y-[], then Y will be
instantiated to [a,b,c] in the usual list notation:

?- [a,b,c|X]-X = Y-[].

X = []

Y = [a, b, c] ;

No

Fig. 1 shows how the three conceptual lists are interrelated.

[a,b,c|X]
︷ ︸︸ ︷

︸ ︷︷ ︸

X

︸ ︷︷ ︸

[a,b,c|X] - X

Figure 1. Difference list

It must be emphasized that the above interpretation is a mere working model

for what is actually taking place inside Prolog. It turns out, however, that it is

unnecessary to look beyond this conceptual model when working with ‘difference

lists’. To reinforce this point, let us consider yet another (the fourth) version of

append :

app_dl4(A-B,B-C,A-C).

All arguments of app dl4/3 are difference lists; the earlier query now reads as
follows.

?- app_dl4([a,b,c|X]-X,[d,e|Y]-Y,Z1-Z2).

X = [d, e|_G370]

Y = _G370

Z1 = [a, b, c, d, e|_G370] Z2 = _G370 ;

No

The (difference) lists involved here are interrelated as shown in Fig. 2. The

concatenated list is returned in the last argument of app dl4/3 in the form of [a,

b, c, d, e| G370]- G370. (G370 being some internally chosen variable name.)

It is easily seen that this is accomplished in one unification step irrespective of

“tmcs-csenki” — 2010/4/12 — 23:38 — page 77 — #5

Difference lists in Prolog 77

[a,b,c]

A
︷ ︸︸ ︷

︸ ︷︷ ︸

B
︸ ︷︷ ︸

A - B

[d,e]

︸ ︷︷ ︸

C
︸ ︷︷ ︸

B - C
︸ ︷︷ ︸

A - C = [a,b,c,d,e]

Figure 2. List concatenation by difference lists

the lengths of the lists to be concatenated. (Appending difference lists is therefore

a constant time operation.)
We now want to confirm all this experimentally, too. To get started, we

need some method for creating difference lists. One way forward is by means of
append/3 . For example, in

?- setof(N,between(1,5, N),Ns), append(Ns,X,L), DL = L-X.

Ns = [1, 2, 3, 4, 5]

X = G468

L = [1, 2, 3, 4, 5| G468]

DL = [1, 2, 3, 4, 5| G468]- G468

the list [1,2,3,4,5] is written as a difference list DL using the internal variable
G468. We now append to DL the difference list form of [d,e] and also measure
the number of inferences by time/1 :

?- setof(N,between(1,5, N),Ns), append(Ns,X,L), DL = L-X,

time(app_dl4(DL,[d,e|Y]-Y,Z1-Z2)).

% 1 inferences in 0.00 seconds (Infinite Lips)

Ns = [1, 2, 3, 4, 5]

X = [d, e| G691]

L = [1, 2, 3, 4, 5, d, e| G691]

DL = [1, 2, 3, 4, 5, d, e| G691]-[d, e| G691]

Y = G691

Z1 = [1, 2, 3, 4, 5, d, e| G691]

Z2 = G691

We need one single inference step only. On the other hand, the corresponding
operation with proper lists is more expensive (6 inferences):

?- setof(N,between(1,5, N),Ns), time(append(Ns,[d,e],Z)).

% 6 inferences in 0.00 seconds (Infinite Lips)

“tmcs-csenki” — 2010/4/12 — 23:38 — page 78 — #6

78 Attila Csenki

Ns = [1, 2, 3, 4, 5]

Z = [1, 2, 3, 4, 5, d, e]

(You may wish to repeat the experiment with larger lists by adjusting the second

argument in between/3 above.)

Implementations of list reversal

There are several ways we can define our own version of the built-in predicate

reverse/2 . Its first implementation (P-1) uses append/2 .

Prolog Code P-1: First implementation of reverse/2

1 reverse_1([],[]). % clause 1

2 reverse_1([H|T],R) :- reverse_1(T,L), % clause 2

3 append(L,[H],R). %

A declarative reading of clause 2 in (P-1) is suggested in Fig. 3.

H T- -

T H� �

︸ ︷︷ ︸

L
︸ ︷︷ ︸

R

?

Figure 3. Declarative reading of (P-1)

Another implementation of list reversal, now by the accumulator technique,

is by (P-2).

Prolog Code P-2: A second implementation of reverse/2

1 reverse([],R,R). % clause 1

2 reverse([H|T],Acc,R) :- reverse(T,[H|Acc],R). % clause 2

3 reverse_2(L,R) :- reverse(L,[],R). % clause 3

(P-1), when rewritten in terms of difference lists, results in (P-3).

“tmcs-csenki” — 2010/4/12 — 23:38 — page 79 — #7

Difference lists in Prolog 79

Prolog Code P-3: Definition of reverse/2 by difference lists

1 rev_dl([],L-L). % clause (a1)

2 rev_dl([X],[X|L]-L). % clause (a2)

3 rev_dl([H|T],L1-L3) :- rev_dl(T,L1-L2), % clause (a3)

4 rev_dl([H],L2-L3). %

5 reverse_3(L,R) :- rev_dl(L,R-[]), !.

Notice that clause (a2) in (P-3) does not directly correspond to any of the clauses

in (P-1); it simply defines the difference list representation of (the reverse of) a

list with a single entry.

Concise definitions

We consider several ‘improved’ versions of the definition of rev dl/2 in (P-3).

Ê An alternative to the definition of rev dl/2 in (P-3) is the more concise def-

inition (P-4).

Prolog Code P-4: Concise definition of rev dl/2

1 rev_dl([],L-L). % clause 1

2 rev_dl([H|T],L1-L2) :- rev_dl(T,L1-[H|L2]). % clause 2

An interpretation of clause 2 in (P-4) is shown in Fig. 4.

H T- -

T H� �

L2
︷ ︸︸ ︷

︸ ︷︷ ︸

[H|L2]

︸ ︷︷ ︸

L1 - [H|L2]
︸ ︷︷ ︸

L1

?

Figure 4. Illustrating clause 2 in (P-4)

It admits the following declarative interpretation:

The difference list L1-L2 is the reverse of the list [H|T] if

the difference list L1-[H|L2] is the reverse of T .

“tmcs-csenki” — 2010/4/12 — 23:38 — page 80 — #8

80 Attila Csenki

(This shows once again that we can think of difference lists as if they were

true differences of lists!)

Ë Fig. 5 shows an improvement version of the earlier definition of rev dl/2 by

re-arranging the list ‘in entries in twos’.

E1 E2 T- -

T E2 E1� �

L2
︷ ︸︸ ︷

︸ ︷︷ ︸

[E2,E1|L2]

︸ ︷︷ ︸

L1 - [E2,E1|L2]
︸ ︷︷ ︸

L1

??

Figure 5. Illustrating an even better version

It admits the following declarative interpretation:

The difference list L1-L2 is the reverse of the list [E1,E2|T]

if the difference list L1-[E2,E1|L2] is the reverse of T .

The new version based on Fig. 5 is defined in (P-5).

Prolog Code P-5: Definition of reverse 5/2

1 reverse_5(L,R) :- rev_dl_3(L,R-[]).

2 rev_dl_3([],L-L). % clause 0

3 rev_dl_3([X],[X|L]-L). % clause 1

4 rev_dl_3([E1,E2|T],L1-L2) :- rev_dl_3(T,L1-[E2,E1|L2]). % clause 2

Noteworthy is in (P-5) that reversal is carried out in ‘chunks of twos’ resulting

in fewer invocations of the auxiliary predicate. There are now two boundary

clauses: if the list to be reversed has an even number of entries then clause 0

is used; otherwise, clause 1 applies.

Ì Further Enhancement. We modify the last implementation by processing the

input list in chunks of threes; this is shown in (P-6).

“tmcs-csenki” — 2010/4/12 — 23:38 — page 81 — #9

Difference lists in Prolog 81

Prolog Code P-6: Definition of reverse 6/2

1 reverse_6(L,R) :- rev_dl_4(L,R-[]).

2 rev_dl_4([],L-L).

3 rev_dl_4([E1],[E1|L]-L).

4 rev_dl_4([E1,E2],[E2,E1|L]-L).

5 rev_dl_4([E1,E2,E3|T],L1-L2) :- rev_dl_4(T,L1-[E3,E2,E1|L2]).

It is seen that three base cases are needed now, defining explicitly the reversal
of lists with up to two entries. The speed can be studied by a query like the
one below.

?- findall(_N,between(1,100000,_N),_L), time(reverse_6(_L,_R)).

% 33,335 inferences in 0.50 seconds (66670 Lips)

Í Generalization. We may provide n base cases catering for the reversal of lists

with up to n − 1 entries explicitly and write a recursive clause for reversing

lists with at least n entries.

Ordinary to difference lists and vice versa

Let the predicate dl/2 be defined by (P-7).

Prolog Code P-7: Definition of dl/2

1 dl([], L-L). % clause 1

2 dl([H|T], [H|L1]-L2) :- dl(T, L1-L2). % clause 2

dl/2 ‘converts’ ordinary lists to difference lists. Here is an interactive session.

?- dl([1,2,3,4], DL).

DL = [1, 2, 3, 4|_G255]-_G255

Yes

?- dl([1,2,3,4], L1-L2), dl([a,b,c], L2-L3).

L1 = [1, 2, 3, 4, a, b, c|_G208]

L2 = [a, b, c|_G208]

L3 = _G208

Yes

?- dl([1,2,3,4], L1-L2), dl([a,b,c], L2-L3), L3 = [].

L1 = [1, 2, 3, 4, a, b, c]

L2 = [a, b, c]

L3 = []

Yes

?- dl([1,2,3,4], L1-_L2), dl([a,b,c], _L2-_L3), _L3 = [].

L1 = [1, 2, 3, 4, a, b, c]

Yes

“tmcs-csenki” — 2010/4/12 — 23:38 — page 82 — #10

82 Attila Csenki

Interpretation.

Ê In the first query, I convert [1,2,3,4] to a difference list.

Ë In the second query, I do this also for [a,b,c] and at the same time I cleverly

choose the names of the constituent parts of the difference lists involved such

that the concatenation is achieved ‘on the sly’: Concatenating L1-L2 and

L2-L3 gives L1-L3 .4

Ì In the third query, I instantiate L3 to be the empty list whereupon the

concatenated list L1-L3 becomes L1 , an ordinary list. This then is the result

as an ordinary list.5

Í Finally, the fourth query is almost identical to the third one except that

intermediate results are not displayed as a result of starting their names with

an underscore. (This is because the first line of my Prolog file is the directive

:- set prolog flag(toplevel print anon, false).)

Laboratory handouts

Lab Session Week 15 (3/02/2009)

In the first four exercises, I consider various implementations of list flattening.

Then, in the exercises five and six, I consider some other questions on difference

lists.

Exercise 1

Study the manual’s description (using help/1) of the built-in predicate

flatten/2 . Devise various examples demonstrating the use of flatten/2 .

4Of course, this is a ‘true’ statement once we accept our model that we really deal here with

differences of lists. Never mind that that is not the case! Difference lists are a mere concept, a

figment of the programmer’s imagination, a fiction, which, however, affords a workable model.

I suspect that this is the case also in other realms of knowledge. Take for example Physics. Do

elementary particles really exist (for a few nanoseconds (?)) or are they merely a convenient

(albeit working) modelling tool allowing the observer to predict phenomena correctly? We don’t

care as long as none of the observations contradicts our model. (Questions concerning ‘existence’

belong to Philosophy and not Physics.)
5Notice that throughout our argument we pretend to be dealing with differences of lists.

“tmcs-csenki” — 2010/4/12 — 23:38 — page 83 — #11

Difference lists in Prolog 83

Exercise 2

Introductory considerations

Here is Clocksin’s implementation of flatten/2 in [1].

Prolog Code P-8: Clocksin’s definition of flatten/2 in [1]

1 flatten([],[]). % clause 1

2 flatten([H|T],L1) :- flatten(H,L2), % clause 2

3 flatten(T,L3), %

4 append(L2,L3,L1). %

5 flatten(X,[X]). % clause 3

Test and reflect on this definition. It is easily understood through a declarative

reading:

• Clause 1: This is the base case. It says that an empty list is flattened into

an empty list.

• Clause 2: This is the recursive step. A list [H|T] (whose head H is possibly

a list itself) is flattened in the following steps.

1. Flatten the head H .

2. Flatten the tail T .

3. Concatenate the latter two flattened lists.

• Clause 3: The flattened version of a term that unifies neither with [] nor

with [H|T] is the term itself. This clause is intended to cater for the case of

list entries which are not themselves lists; a ground atom (i.e. a one without

a variable) is an example thereof.

List flattening defined by (P-8) works as intended for (nested) lists whose tree
representation has leaves which are ground atoms or are terms with other than
the dot functor; for example,

?- flatten([a,[b,[f(X,d),[]],[c,f(X),a],e]],L).

X = _G414

L = [a, b, f(_G414, d), c, f(_G414), a, e]

However, lists some of whose leaves are free variables, won’t be correctly flattened
by flatten/2 :

?- flatten([a,[Y,[b,X]],c,f(X)],L).

Y = []

X = []

L = [a, b, c, f([])]

“tmcs-csenki” — 2010/4/12 — 23:38 — page 84 — #12

84 Attila Csenki

The Exercise Proper

Augment the definition of flatten/2 such that it correctly handles also
lists involving free variables. Another (though easy to rectify) shortcoming of
flatten/2 is that on backtracking it will return spurious solutions:

?- flatten([a, [b, [], [c, a], e]],L).

L = [a, b, c, a, e] ;

L = [a, b, c, a, e, []]

Your improved implementation (version 4) should solve also this problem.

Hint. Consider using the built in predicate var/1 .

Exercise 3

Define a difference lists based version of flatten/2 in (P-8).
We have developed several versions of flatten/2 and now their relative

performance should be assessed. To do this, we need a way of generating nested
lists which are ‘complicated’ enough to cause a noticeable amount of computing
time when flattened. A predicate nested(+Num,-List) will prove useful for this
purpose: given the positive integer Num , List should be unified with a nested list
in the following fashion:

?- nested(9,L).

L = [[[[[[[[[1], 2], 3], 4], 5], 6], 7], 8], 9]

Exercise 4

Define the predicate nested/2 by the accumulator technique and then use

it to time the performance of the various versions of flatten/2 by the built-in

predicate time/1 . (You may wish to draw hand computations for nested/2 in

preparation for its definition.)

Exercise 5

Give a pictorial illustration of clause 2 of dl/2 in (P-7). Based on this

illustration, give it a declarative reading.

Exercise 6

Assess the computational speed of the various implementations of list reversal
from the lectures interactively. Typically, you will start with the following.

?- findall(_N,between(1,2000,_N),_L), time(reverse_1(_L,_R)).

% 2,003,001 inferences in 19.34 seconds (103568 Lips)

?- ...

“tmcs-csenki” — 2010/4/12 — 23:38 — page 85 — #13

Difference lists in Prolog 85

Solutions

Solution of Exercise 2

The improved version is defined in (P-9).

Prolog Code P-9: Definition of flatten 2/2

1 flatten_2(X,[X]) :- var(X), !. % clause 0

2 flatten_2([],[]). % clause 1

3 flatten_2([H|T],L1) :- flatten_2(H,L2), % clause 2

4 flatten_2(T,L3), %

5 append(L2,L3,L1), !. % cut added here

6 flatten_2(X,[X]). % clause 3

Clauses 1 to 3 are essentially as in flatten/2 . (The cut in clause 2 has been added
to achieve a unique solution.) To rectify the other problem with flatten/2 , we
have to understand why it produces spurious solutions on backtracking. When
flatten/2 arrives at a list entry which is a variable, it will first unify the variable
with the empty list and then on further backtracking with [H|T] where H and
T are themselves variables. Because of the recursive definition, this will then
give rise to further such erroneous unifications. To avoid this, we simply ‘catch’
a variable first argument by clause 0. flatten 2/2 thus defined behaves as
expected:

?- flatten 2([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)] ;

No

Solution of Exercise 3

(P-10) shows a clause-by-clause ‘translation’ of the definition of flatten/2

in terms of difference lists.

Prolog Code P-10: Difference list based definition of flatten/2

1 flatten_3(L,F) :- flatten_dl(L,F-[]), !. % clause 1

2 %

3 flatten_dl([],L-L). % clause 2

4 flatten_dl([H|T],L1-L3) :- flatten_dl(H,L1-L2), % clause 3

5 flatten_dl(T,L2-L3). %

6 flatten_dl(X,[X|Z]-Z). % clause 4

“tmcs-csenki” — 2010/4/12 — 23:38 — page 86 — #14

86 Attila Csenki

The append goal does not appear in (P-10) as list concatenation is now accom-

plished by difference lists. flatten 3/2 will behave identically to flatten/2

except that its solution is unique because of the cut (!) in clause 1.

Solution of Exercise 4

We define in (P-11) nested/2 in terms nested/4 whose second and third

argument are a counter and an accumulator, respectively.

Prolog Code P-11: Definition of nested/2

1 nested(M,L) :- nested(M,1,[1],L), !.

2 nested(M,M,L,L).

3 nested(M,N,Acc,L) :- NewN is N + 1,

4 nested(M,NewN,[Acc,NewN],L).

The versions’ relative performance is illustrated below. It is seen in particular
that the one based on difference lists is nearly as good as the built-in version.

?- nested(8000, L), time(flatten(L, F)).

% 95,999 inferences in 0.44 seconds (218180 Lips)

?- nested(8000, L), time(flatten 1(L, F)).

% 216,004 inferences in 12.96 seconds (16667 Lips)

?- nested(8000, L), time(flatten 2(L, F)).

% 144,007 inferences in 12.79 seconds (11259 Lips)

?- nested(8000, L), time(flatten(L, F)).

% 335,514 inferences in 9.88 seconds (33959 Lips)

ERROR: Out of global stack

?- nested(8000, L), time(flatten 3(L, F)).

% 32,000 inferences in 0.93 seconds (34409 Lips)

Furthermore, it is seen that version 3, the implementation using list concatenation

with append/3 , is not practically viable due to stack overflow. (This problem has

been experienced even for a nesting depth of 1000.)

Solution of Exercise 5

Fig. 6 admits the following declarative interpretation:

The difference list version of [H|T] is [H|L1]-L2 if the difference

list version of T is L1-L2 .

Solution of Exercise 6

?- findall(_N,between(1,2000,_N),_L), time(reverse_1(_L,_R)).

% 2,003,001 inferences in 19.34 seconds (103568 Lips)

“tmcs-csenki” — 2010/4/12 — 23:38 — page 87 — #15

Difference lists in Prolog 87

L1
︷ ︸︸ ︷

[H|L1]
︷ ︸︸ ︷

︸ ︷︷ ︸

L2

︸ ︷︷ ︸

[H|T]

H T

Figure 6. Illustrating the second clause of dl/2

?- findall(_N,between(1,2000,_N),_L), time(reverse_2(_L,_R)).

% 2,002 inferences in 0.00 seconds (Infinite Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_3(_L,_R)).

% 4,000 inferences in 0.06 seconds (66667 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_4(_L,_R)).

% 2,002 inferences in 0.05 seconds (40040 Lips)

It is seen that the ‘näıve’ implementation is far less efficient than either of the

other three. Furthermore, version 4 is seen to behave in the same way as the

one using accumulators (which is the method used also to implement the built-in

version).

References

[1] W. F. Clocksin, Clause and Effect, Prolog Programming for the Working Program-
mer, Springer, London, 1997.

[2] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer, London, 1994,
fourth edition.

[3] A. Csenki, Rotations in the plane and Prolog, Science of Computer Programming
66 (2007), 154–161.

[4] A. Csenki, Prolog Techniques, Ventus Publishing ApS, Copenhagen, 2009,
http://bookboon.com/uk/student/it/.

[5] L. Sterling and E. Shapiro, The Art of Prolog, Advanced Programming Techniques,
MIT Press, Cambridge Ma, London, 1986.

[6] J. Wielemaker, SWI-Prolog 5.1 Reference Manual, Amsterdam, 2003.

ATTILA CSENKI

UNIVERSITY OF BRADFORD

BD7 1DP, UNITED KINGDOM

E-mail: a.csenki@bradford.ac.uk

(Received May, 2009)

