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Examples of analogies and

generalizations in synthetic geometry

Ioana E. Agut and Calin M. Agut

Abstract. Teaching tools and different methods of generalizations and analogies are often
used at different levels of education. Starting with primary grades, the students can
be guided through simple aspects of collateral development of their studies. In middle
school, high school and especially in entry-level courses in higher education, the extension
of logical tools are possible and indicated.

In this article, the authors present an example of generalization and then of building
the analogy in 3-D space for a given synthetic geometric problem in 2-D.

The idea can be followed, extended and developed further by teachers and students
as well.
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1. Introduction

In the large process of studying and learning there are many methods, tools

and achievement ways, some of them developed by themselves, others for inter-

connections. Two of them are the generalization and analogy.

In 1954 the mathematician George Polya ([15]) describes the process of doing

mathematics. He identifies three iterative processes:

– Generalization is “passing from the consideration of a given set of objects to

that of a larger set”;

– Specialization is “passing from the consideration of a given set of objects to

that of a smaller set, contained in the given one”, and
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– Reasoning from analogy involves identifying “similarity on a more definite

and more conceptual level”.

Today, in any instructional process of learning, in schools, colleges or universities,

at any level of study, the notions of generalization and analogy are playing an

important role.

In helping with these tools, a teacher needs to be prepared to offer situations

in which the student has the possibility to expand their knowledge and be able

to apply their knowledge to different analogical cases.

From our experience, we know that the instructors and the students struggle

with topics in synthetic euclidean geometry, which are considered by many to be

finished. The complexity and the beauty of this subject come from the fact that

it’s needing a strong rational and logical potential, as well as imagination and

mathematical knowledge. The reasoning is essential and considered basic with

this kind of geometry.

We have chosen in the article to present an example of extension of the regular

routine study in a such class of synthetic geometry, opening the horizon of new

discussions and topics for teachers and students. Starting from a given geometric

problem with triangles, lines and points, we built a generalization of it, extending

the properties or restraining the constraints. The new result is presented in

synthetic geometry, too. Another part includes the analogies made in 3-D space.

In a regular high school or middle school talented-students Mathematics class

the following problem is given (also it can serve for an introductory Geome-

try/Methodology course in higher education):

Problem 1 (Starting Problem). Let ABC be a triangle and d an exterior

line of it. Consider G the centroid of the triangle and A1, B1, C1 and G1 be

the projections of A, B, C and G, respectively on the line d. Then the following

relation takes place:

AA1 + BB1 + CC1 = 3GG1.

It can be solved using basic knowledge in geometry and reasoning.

First of all, let’s recall an important concept often used along this article:

Definition 1. The centroid (also called geometric center, or barycenter) of

a plane figure is the intersection of all straight lines that divide the figure into two

parts of equal moment about the line. Extended to any object in n-dimensional

space, the centroid is the intersection of all hyperplanes that divide the object

into two parts of equal moment.
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In Physics, the centroid is called also center of mass or weight center.

For particular objects, like triangles (or tetrahedrons), the centroid is found

at the intersection of the medians (or the intersection of all line segments that

connect each vertex to the centroid of the opposite face).

Our study here is to extend the work with this kind of problems, using three

steps:

(1) Build its analogous in 3-D space:

Using the analogy methods the Starting Problem can be “translated” in 3-D

space as follows:

Problem 2 (The Analogous Problem). Let ABCD be an arbitrary tetra-

hedron and (d) an exterior plane of it. We denote by G the centroid of the

tetrahedron. Through the points A, B, C, D and G we draw perpendicular lines

to the plane (d) and denote the intersecting points with A1, B1, C1, D1 and G1,

respectively. Then

GG1 =
AA1 + BB1 + CC1 + DD1

4
.

(2) Build the generalization of Analogous Problem:

Using methods of generalization, the Starting Problem can be extended to

this:

Problem 3 (The Generalization Problem). Let ABCD be a tetrahedron, d

an exterior plane of ABCD and M an arbitrary interior point of the tetrahedron

ABCD. We draw parallel lines through the points A, B, C, D and M , which

intersect the plane d in A1, B1, C1, and M1, respectively. Then there are three

constant real numbers m, n and k such that:

MM1 =
kn(m − 1)AA1 + k(n − 1)DD1 + (k − 1)CC1 + BB1

mnk
.

(3) Find specializations for the generalization.

Will be given some examples of specializations, starting from the Generaliza-

tion Problem. One of them will be the Starting Problem.

The later proofs for Problems 1-3 will endorse our work here.
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2. Preliminaries

In our days, the first preoccupation for teachers is to enhance students’ knowl-

edge using different methods of teaching. All these methods give birth for a vast

field of research called generic “education”. Now the education is an expansive

field of research, which encompass all academic departments (B. Sriraman, [21]).

In solving complex problems beside the known levels and classifications, there

are the psychology of thinking involved. Funke (in [7]) defines the complex prob-

lem solving “by contrasting it with simple, noncomplex problem solving in terms

of the non-orthogonal criteria”. Based on his theory the psychological thinking

increases the ability to understand the given data and the question of the prob-

lem; also it determines the goals of proofs and discovers the properties involved

in solving the problems. To solve complex problems first the students are to learn

to develop pattern-recognition and classification skills. Also they have to justify

the answers using the empirical evidence and deductive reasoning. The progress

of students consists in their capacity to formulate the generalizations and conjec-

tures, evaluate conjectures and construct mathematical arguments (B. Sriraman

in [21]). Many researchers like S. Epp ([5]) investigated the deductive reasoning

in many domains such as deductive proof using empirical evidence and analytical

approach.

Polya ([16]) wrote an ample paper about demonstrative reasoning and plausi-

ble reasoning. A particular case of plausible reasoning is the inductive reasoning

(inductive logic), that invoke the inductive reasoning of generalization and anal-

ogy. The analogy and inductive reasoning are the most important contents in

mathematical discovery. They are considered a particular case of plausible rea-

soning.

2.1. Analogies

“A conjecture becomes more credible if an analogous conjecture becomes more

credible” (G. Polya)

Analogy is a powerful cognitive tool for discovery and learning new concepts

based on existing knowledge. It allows students to learn intuitively using the

existing knowledge as a bridge between similar situation and new situation. The

analogy can represent an abstract idea in terms of concrete or physical structures.

The success of intuitive learning is based on understanding and persuading in

finding the similarities between two situations, and concrete structures from life.



“tmcs-agut” — 2010/4/12 — 23:30 — page 23 — #5

Examples of analogies and generalizations in synthetic geometry 23

The analogy has a significant role in teaching, learning and understanding ge-

ometrical properties. Its method is successful and important because it is the most

familiar method of discovering the similarities and differences between figures. In

Euclidean geometry and also in non-Euclidean geometry many geometrical prop-

erties are proved, using comparison and analogy with the existing properties. For

this reason words as: “same”, “similar”, “just like” are used in teaching. The

geometry itself offers a lot of analogies.

If we extend the dimension for the real space of geometry, we also can make

analogies between, for instance, 3-D Euclidean space (our real space) and the

4-dimensional space-time.

Many of the ideas of Euclidean geometry have direct analogies in space-time

geometry. This analogy makes some of the interesting ideas of space-time a little

more intuitive.

2.2. Generalizations

“An idea is always a generalization, and generalization is a property of think-

ing. To generalize means to think.”(Georg Hegel)

Generalization is a foundational element of logic and human reasoning. It

is the essential basis of all valid deductive inference. The concept of generaliza-

tion has broad applications in many disciplines, sometimes having a specialized

context-specific meaning.

In general, for two related concepts, X and Y ; we can say that the concept X

is a generalization of the concept Y if and only if every exemplification of con-

cept Y is also an exemplification of concept X . There are cases of concept X

which are not instances of concept Y .

The generalization has an important significance in teaching and learning

all mathematical subjects. The teachers can develop student’s generalization

tool, using inductive and deductive approach. The students are using inductive

approach based on discovery of information, they are guided by the teachers to

observe the differences and similarities between concepts, and to draw patterns

and trends and finally to state the conclusion and a generalization. Based on

discovery process students complete the inductive approach, which is related to

learn by asking questions. The deductive approach is explanatory where students

have to support or refute a given theory or hypothesis. In this approach teachers

provide all the materials assisting the students to verify the generalization.

In teaching both inductive and deductive generalization used when the teach-

ers want to teach specific topics in mathematics.
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From the geometry point of view the generalization method has a great role of

visualization and the perception of geometrical properties. Using generalization

we can increase the student’s ability in learning and understanding the geomet-

rical concepts. Moreover we can investigate students capacity to generalize the

geometrical figures and objects and the way of their developments.

In generalizing geometrical figures and objects that we can discuss, in function

of their complexity, three important classifications are:

• generalization of definitions,

• generalization of geometrical properties of some objects and

• creative generalization.

Each type has a very important function in generalization process. For ex-

ample in generalization of a definition the students have to state which figure

is more general then the other from the same figure set. The generalization of

properties usually refers to arbitrary points in plan and their properties. For the

last type of classification, students have to change some features of geometrical

objects such that to obtain a generalization of them.

A famous generalization is described by G. Polya in [14]: starting from the

most known theorem in geometry – The Pythagorean Theorem, Euclid stated in

one of his 13 books from The Elements : If three similar polygons are described on

three sides of a right triangle, the one described on the hypothesis is equal in area

to the sum of the two others. It’s instructive to observe that this generalization

is equivalent to the special case from which is started. Is instructive because we

can learn from it something applicable to other cases, and the more instructive

the wider the range of possible applications.

2.3. Basic facts in synthetic geometry

Because in solving the Starting Problem we need some basis facts in synthetic

geometry and moreover, for building the analogy and its generalization we need

basic facts, too, we will recall fundamental results and reasoning in 2-D and 3-D

geometry. Most of them can be found in any elementary or advanced geometric

textbook, like [4], [11], [10], or [17].

Let’s recall some properties of the centroid of a triangle. First, we have the

following:

Definition 2. A median of a triangle is a line segment joining a vertex to

the midpoint of the opposing side. Every triangle has exactly three medians.
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Then a property of medians is given by:

Proposition 1 ([11]). If ABC is a triangle and A1, B1 and C1 are the

midpoints of the sides (BC), (AC) and (AB) respectively, then the segments

(AA1), (BB1) and (CC1) intersect in a point G, which is the centroid of the

triangle.

Now, there is following a metric basic property related to the centroid of a

triangle:

Lemma 1 ([17]). If ABC is an arbitrary triangle and G is its centroid G,

then
A1G

AG
=

B1G

BG
=

C1G

CG
=

1

2
(2.1)

where A1, B1, and C1 are the midpoints of the triangle sides (BC), AC and (AB),

respectively.

The next fundamental and famous result is called from early time to be one

of the Thales Theorems, but also is known as Similar Theorem in triangle.

Theorem 1 ([17]). (Thales’ Theorem) For any triangle ABC, if M ∈ AB

and N ∈ AC such that MN‖BC, then

AM

AB
=

AN

AC
=

MN

BC
. (2.2)

The Thales’s Theorem is used for an arbitrary triangle, but also can be ex-

tended for a trapezoid. The analogy takes place because the trapezoid is the first

particular king of quadrilaterals in 2-D, having a pair of parallel sides.

Let’s consider the trapezoid ABCD (see Figure 1). If M ∈ AD and N ∈ BC

such that: MN‖CD‖AB, and

AM

AD
=

BN

BC
=

1

q
.

If we connect the points B and D, the line segment (BD) intersects the line

segment MN in a point P .

Applying (2.2) for triangle ADB and line segment MP , we obtain:

AM

AD
=

1

q
→

AD

MD
=

q

q − 1
,
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Figure 1. Extension of Thales Theorem

such that
AB

MP
=

q

q − 1
,

and it follows

MP =
q − 1

q
AB. (2.3)

Also, applying (2.2) in the triangle BCD for the line segment PN , we find

that

PN =
1

q
CD. (2.4)

Adding the relations (2.3) and (2.4) we obtain:

MN = MP + PN

=
q − 1

q
AB +

1

q
CD

=
CD + (q − 1)AB

q
,

which is exactly (2.6).

There are several different methods in proving this result, and we described

above just one of them.

Based on the above reasoning, we can now state:
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Proposition 2. (Extension of Thales’ Theorem in trapezoid) Let ABCD

be a trapezoid. If M ∈ AD and N ∈ BC such that: MN‖CD‖AB, and

AM

AD
=

BN

BC
=

1

q
(2.5)

where q > 1, then

MN =
CD + (q − 1)AB

q
. (2.6)

In preparing the extension to 3-D space case, we recall the following results:

Proposition 3 ([10]). If ABCD is a tetrahedron and G1, G2, G3, and G4

are the centroids of the faces BCD, ADC, ABD and ABC respectively, then the

segments AG1, BG2, CG3 and DG4 will intersect in an interior point G, which

is the centroid of the tetrahedron.

Proposition 4 ([10]). If ABCD is a arbitrary tetrahedron and G is its

centroid, then
AG

AG1

=
BG

BG2

=
CG

CG3

=
DG

DG4

=
3

4
(2.7)

where G1, G2, G3, and G4 are the centroids of the faces BCD, ADC, ABD and

ABC respectively.

3. The Starting Problem

Our presentation starts from a synthetic geometric problem in plane (2-D):

Let’s consider an arbitrary triangle ABC, and d an exterior line of it. Also,

let’s consider G be the centroid of the triangle ABC and A1, B1, C1 and G1 be

the projections of A, B, C and G, respectively, on the line d (see Figure 2).

We denote by M the midpoint of the side (BC), so that CM
CB

= 1

2
, and by

M1 its projection on d. In this situation, based on Lemma 1, we have also that
GM
AM

= 1

3
.

Now, in the trapezoid AMM1A1, because GM
MA

= 1

3
, we may use (2.6) for

q = 3, and obtain

GG1 =
AA1 + 2MM1

3
.
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Figure 2. Starting Problem

Repeating the procedure in the trapezoid BCC1B1, because CM
CB

= 1

2
, we

may use (2.6) for q = 2, and obtain

MM1 =
BB1 + CC1

2
.

Combining the above two relations, is easy to see that

GG1 =
AA1 + BB1 + CC1

3
.

We may conclude all of the above as a proof of the following:

Proposition 5 ([4]). (The Starting Problem) Let ABC be a triangle and d

an exterior line of it. Consider G the centroid of the triangle and A1, B1, C1 and

G1 be the projections of A, B, C and G, respectively, on the line d. Then the

following relation takes place:

AA1 + BB1 + CC1

3
= GG1.

The previous result is proven using synthetic geometry at an elementary level,

just using basic facts.

Other analogous proofs can be used using coordinate or vector geometry.
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4. The analogy in 3-D

First step in exploring, extending and developing the study regarding this

simple geometric 2-D problem is to see what happens if we move from plane to

a 3-D space. For sure here we’ll need not only the basic concepts as points, lines

and figures, but also other basic geometric concepts as plane and solid figures.

4.1. Describing the analogy

Our extension starts from the following analogy:

Starting Problem to Analogous Problem

(synthetic geometry 2-D) (synthetic geometry 3-D)

In the Starting Problem we face with the 2-D geometric facts. Translated

into 3-D it’s possible to obtain something different, but still analogous.

The analogous figure in 3-D for a triangle is a tetrahedron.

In 2-D each triangle has a centroid. Analogous, in 3-D each tetrahedron has

a centroid. The metric relation related to the position of the centroid in triangle

has analogous in tetrahedron (Proposition 4).

In 2-D we had perpendicular lines on the exterior line d, through the vertices

and G; analogous in 3-D we can draw perpendicular lines on the exterior plane d,

through the vertices of tetrahedron and its centroid.

Summarizing the construction, we represent the analogies in the following

table:

Starting Problem to Analogy in 3-D

Triangle ABC - Tetrahedron ABCD

Exterior line (d) - Exterior plane (d)

Intersection of 2 lines - Intersection of 2 planes or plane-line

Centroid for the triangle - Centroid for the tetrahedron

Parallel lines in 2 − D - Parallel lines in 3 − D

Perpendicularity in 2 − D - Perpendicularity in 3 − D

Colinearity - Coplanarity

The 3-D analogy is another important creative moment for our students. An

analogy of two analogue geometries is important because the students have to find

for each 2-D geometrical figure its 3-D analogue. This is one of the conjectures,

which have to be found based on existing properties.
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4.2. The Analogous Problem

Approaching to an analogy in 3-D for the Starting Problem, let’s consider

the tetrahedron ABCD and an exterior plane (d), as in the Figure 3. We denote

by G the centroid of the tetrahedron. Through the points A, B, C, D and G we

draw perpendicular lines to the plane (d) and denote the intersecting points with

A′, B′, C ′, D′ and G′, respectively.

Figure 3. Analogy in 3-D

Also we denote by D1 the midpoint of the segment (BC), by G1 the centroid

of the triangle BCD and by G the centroid of the tetrahedron ABCD. Through

all these three points we draw also the lines D1D
′

1, G1G
′

1 and GG′, perpendicular

on the plane d, such that the points D′

1
, G′

1
and G′ belong to the plane.

In this situation all the segments AA′, BB′, CC ′, DD′, D1D
′

1, G1G
′

1 and

GG′ are mutual parallel. Because of this, the following triplets of segments belong

to the same plane:

(AA′, GG′, G1G
′

1
) to the plane (AA′G′

1
G1);

(DD′, G1G
′

1, D1D
′

1) to the plane (DD′D′

1D1);

(BB′, D1D
′

1, CC ′) to the plane (BB′C ′C).

Let’s work separately and successively in this three planes.
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In the plane (AA′G′

1G1) the figure AA′G′

1G1 is a right trapezoid with the

basis AA′ and G1G
′

1
. The segment GG′ is also parallel to the bases, such that

AG
AG1

= 3

4
. Using Proposition 2 with relation (2.6) for q = 4

3
, we have

GG′ =
3G1G

′

1 + AA′

4
. (4.1)

In the plane (DD′D′

1
D1) the figure DD′D′

1
D1 is a right trapezoid with the

basis DD′ and D1D
′

1. The segment G1G
′

1 is also parallel to the bases, such that
DG1

DD1

= 2

3
. Using Proposition 2 with relation (2.6) for q = 3

2
, we have

G1G
′

1 =
2D1D

′

1 + DD′

3
. (4.2)

In the plane (BB′C ′C) the figure BB′C ′C is a right trapezoid with the basis

DD′ and D1D
′

1. The segment D1D
′

1 is also parallel to the bases, such that
CD1

CB
= 1

2
. Using Proposition 2 with relation (2.6) for q = 2, we have

D1D
′

1
=

CC ′ + BB′

2
. (4.3)

Finally, if we plug in the expression 4.3 into 4.2, and then 4.2 into 4.1, we

obtain easy the relation

GG′ =
AA′ + BB′ + CC ′ + DD′

4
.

Under the above considerations and proofs, we are able now to give a form

to the analogy in 3-D to the Starting Problem, as follows:

Theorem 2. (The Analogous Problem) Let ABCD be an arbitrary tetra-

hedron and (d) and exterior plane of it. We denote by G the centroid of the

tetrahedron. Through the points A, B, C, D and G we draw perpendicular lines

to the plane (d) and denote the intersecting points with A′, B′, C ′, D′ and G′,

respectively. Then

GG′ =
AA′ + BB′ + CC ′ + DD′

4
. (4.4)

5. The generalization of analogy

The second step in our presentation here is obtained from the Analogous

Problem in 3-D. We try to generalize it, substituting the particular properties of

the problem by more general. The space of work is considered to be also the three

dimensional one.
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5.1. Describing the generalization

Here our study continues with the following construction:

Analogous Problem to Generalization

(synthetic geometry, 3-D) (synthetic geometry, 3-D)

In the Analogous Problem we have a tetrahedron ABCD and an exterior

plane d. We keep these.

The considered point in the Analogous Problem is G, the centroid of the

tetrahedron ABCD. For sure G has a lot of particular properties related to

the tetrahedron, especially the metric relations (as given in (2.7)). The most

general property that G has is to lie in the interior of ABCD. So, instead of the

centroid G, we’ll consider a point M , for which the only condition is to lie inside

of ABCD.

In this new, more general situation, we need to built some metric relations

regarding the point M .

For the point G we had that AG
AG1

= 3

4
, which is an explicit fraction. Also,

we had that G lies on the segment AG1, where G1is the centroid for the triangle

BCD. For sure G1 ∈ int (BCD).

For the point M we have only that lies inside of the tetrahedron ABCD. For

this reason, if we connect the vertex A with M and extend the line, it intersects

the interior of the triangle BCD in a point N . So, N ∈ int (BCD) as G1 did,

and we may consider AM
AN

= 1

m
, where m is an arbitrary real number. It’s easy to

see that m > 1.

Continuing the construction, we draw a line through the points D and N .

Because N ∈ int (BCD), this line intersects the segment (BC) in a point P , such

that that P ∈ int (BC). Moreover, we can assume that DN
DP

= 1

n
, where n is an

arbitrary real number. It’s easy to see that n > 1.

Finally, because P ∈ int (BC), we may consider that CP
CB

= 1

k
, where k is an

arbitrary real number, such that k > 1.

In the construction above we generalize the centroid G by an arbitrary interior

point M .

In the Analogous Problem we have that the lines AA1, BB1, etc. are perpen-

dicular to the plane d. The perpendicular property that they have is very strong

(is given a precisely measure of the angle). A more general property that these

lines have is that they are mutual parallel. If we take into consideration only this

little constraint and asking not to be parallel to the given plane d, we obtain a

more general situation for the Analogous Problem.

We can summarize our steps in the following table:
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Analogous Problem to Generalization

tetrahedron ABCD - tetrahedron ABCD

exterior plane d - exterior plane d

centroid of ABCD - arbitrary interior point M inside ABCD

centroid G1 of ∆BCD - interior point N of triangle BCD

midpoint D1 of (BC) - interior point P of segment (BC)

perpendicular lines on d - mutual parallel lines intersecting d.

Here we use the following:

– Generalization of definition(s): the centroid has the property to be an interior

point of a trapezoid. It will be replaced by another variable interior point of

the trapezoid;

– Generalization of geometrical properties: the centroid G describes a given

and well-known proportion on the corresponding line segments. Replaced

by M , there will be other proportions on the corresponding line segments,

using arbitrary variable. Also, the perpendicular lines on (d) are parallel

to each other. We keep the property that they are parallel, but take off

the perpendicularity condition, such that we get only mutual parallel lines,

intersecting (d).

– Generalization by creativity: to get the corresponding proportions for the

line segments, we need to connect one vertex of the tetrahedron an interior

point; then extend the line and intersect it by the opposite plane/side to the

vertex. In this way we may define new and arbitrary proportions on the line

segments described by intersections.

In addition, this learning task requires basic knowledge of triangle, tetrahe-

dron, the properties of line in tetrahedron, and the properties of parallel and

perpendicular lines. The level of computational off-loading for this generalization

is low because the students have a lot of inference to do. They have to find rela-

tion between proportions of lines, relations between geometrical figures and also

they have to draw auxiliary lines in order to complete the proof.

5.2. The Generalization Problem

In this section we’ll approach to the generalization.

Let’s consider an arbitrary tetrahedron ABCD, d an exterior plane of it

and M be an arbitrary interior point of the tetrahedron. We draw parallel lines

through the points A, B, C, D and M , which intersect the plane d in A1, B1, C1,

and M1, respectively (Figure 4).
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Figure 4. Generalization

Because M is an interior point of the tetrahedron ABCD, we may consider

the points:

{N} = AM ∩ (BCD)

{P} = DN ∩ (BC).

Each of the points M , N and P divides the line on which belongs as follows: there

are the real numbers m, n and k such that:

AM

AN
=

1

m
,

DN

DP
=

1

n
, and

CP

CB
=

1

k
,

where m, n and k ∈ (1,∞).

From each vertex of the tetrahedron A, B, C and D, and from the points M ,

N and P we draw mutual parallel lines which intersect the plane d in A1, B1,C1,

D1, M1, N1, and P1, respectively.

In this situation all the segments (AA1), (BB1), (CC1), (DD1), (MM1),

(NN1) and (PP1) are mutual parallel. Because of this, the following triplets of

segments belong to the same plane:

(AA1, MM1, NN1) to the plane (AA1N1N);
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(DD1, NN1, PP1) to the plane (DD1P1P );

(BB1, PP1, CC1) to the plane (BB1C1C).

Let’s work separately and successively in this three planes.

In the plane (AA1N1N) the figure AA1N1N is a trapezoid with the basis

(AA1) and (NN1). The segment (MM1) is also parallel to the bases, such that
AM
AN

= 1

m
. Using Proposition 2 with relation (2.6) for q = m, we have

MM1 =
NN1 + (m − 1)AA1

m
. (5.1)

Similar, in the plane (DD1P1P ) the figure DD1P1P is a trapezoid with the

basis (DD1) and (PP1). The segment (NN1) is also parallel to the bases, such

that DN
DP

= 1

n
. Using Proposition 2 with relation (2.6) for q = n, we have

NN1 =
PP1 + (n − 1)DD1

n
. (5.2)

The same way in the plane (BB1C1C) : the figure BB1C1C is a trapezoid

with the basis (BB1) and (CC1). The segment (PP1) is also parallel to the bases,

such that CP
CB

= 1

k
. Using Proposition 2 with relation (2.6) for q = k, we have

PP1 =
BB1 + (k − 1)CC1

k
. (5.3)

Finally, if we plug in the expression 5.3 into 5.2, and then 5.2 into 5.1, we

obtain easy the relation

MM1 =
kn(m − 1)AA1 + k(n − 1)DD1 + (k − 1)CC1 + BB1

mnk
.

Our conclusion follows:

Theorem 3. (The Generalization Problem) Let ABCD be a tetrahedron, d

an exterior plane of ABCD and M an arbitrary interior point of the tetrahedron

ABCD. We draw parallel lines through the points A, B, C, D and M , which

intersect the plane d in A1, B1, C1, and M1, respectively. Then there are three

constant real numbers m, n and k such that:

MM1 =
kn(m − 1)AA1 + k(n − 1)DD1 + (k − 1)CC1 + BB1

mnk
. (5.4)

If we are looking in the relation (5.4) for the coefficients of the side lengths,

we see that they are:

the coefficient of AA1 :
kn(m − 1)

mnk
,
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the coefficient of BB1 :
1

mnk
,

the coefficient of CC1 :
k − 1

mnk
,

the coefficient of DD1 :
k(n − 1)

mnk
.

If we add all these coefficients we obtain:

kn(m − 1)

mnk
+

1

mnk
+

k − 1

mnk
+

k(n − 1)

mnk
=

knm − kn + 1 + k − 1 + kn − k

mnk

=
knm

mnk
= 1.

We may state the following:

Remark 1. The sum of the coefficients of the side lengths in (5.4) is equal

to 1.

6. Specializations

6.1. Obtaining the Analogous Problem

From any general statement, making particular considerations, we are able

to obtain specializations.

Instead of having an arbitrary interior point M for a given tetrahedron

ABCD, we consider a more particular one, the centroid G. In this case the

point N is the centroid of the triangle BCD, and P is the midpoint of the side

(BC), such that we have the exactly values: m = 4

3
, n = 3

2
, and k = 2.

We may represent the specialization in the following table:

Generalization to Specialization

tetrahedron ABCD - tetrahedron ABCD

exterior plane d - exterior plane d

arbitrary interior point M inside ABCD - centroid of ABCD

interior point N of triangle BCD - centroid G1 of ∆BCD

interior point P of segment (BC) - midpoint D1 of (BC)

mutual parallel lines intersecting d - perpendicular lines on d.

In relation (5.4) we plug in the particular values for m, n and p. The resulting

specialization gives us exactly the Analogous Problem:
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Theorem 4. Let ABCD be an arbitrary tetrahedron and (d) and exterior

plane of it. We denote by G the centroid of the tetrahedron. Through the points

A, B, C, D and G we draw perpendicular lines to the plane (d) and denote the

intersecting points with A1, B1, C1, D1 and G1, respectively. Then

GG1 =
AA1 + BB1 + CC1 + DD1

4
.

6.2. Obtaining other specializations

We can continue now to built a lot of specializations, directly from the Gen-

eralization Problem. One more example presented here is the following:

In the tetrahedron ABCD we denote by P the midpoint of the segment (BC)

and by N the midpoint of the segment (DP ). It follows immediately that DN
DP

= 1

2

and CP
CB

= 1

2
, such that in (5.4) we consider n = k = 2.

Finally, we denote by M the midpoint of the segment (AN), such that AM
AN

=
1

2
and m = 2 in (5.4).

Thus, our specialization here can be represented in the following table:

Generalization to Specialization (2)

tetrahedron ABCD - tetrahedron ABCD

exterior plane d - exterior plane d

interior point P of segment (BC) - midpoint P of (BC)

interior point N of segment (DP ) - midpoint N of (DP )

arbitrary interior point M of ABCD - midpoint M of (AN)

mutual parallel lines intersecting d - perpendicular lines on d.

Plugging in the values for m, n and p into (5.4) we state the following:

Theorem 5. Let ABCD be an arbitrary tetrahedron and (d) and exterior

plane of it. We denote by P , N and M the midpoints of the line segments (BC),

(DP ) and (AN) respectively. Through the points A, B, C, D and M we draw

perpendicular lines to the plane (d) and denote the intersecting points with A1,

B1, C1, D1 and M1, respectively. Then

MM1 =
4AA1 + BB1 + CC1 + 2DD1

8
.
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7. Conclusion

The generalization in learning process has the important role to eliminate

some particularities of a conjecture make it to represent a larger class of conjec-

tures where the first is included. By generalization in fact the students’ judgment

is exploring the abstract areas, which require high knowledge related to the prob-

lem or theory.

The analogy is one of the most used reasoning in teaching and learning. In

teaching with analogies the teacher usually are based on the following steps: in-

troduce the target concept, access the source of analogy, identify relevant features

of the source of target, map similarities of source and target, investigate where

the analogy is brake down, draw conclusions. The analogy is designed to help

students in develop judgment about a good choice for the source from a number

of sources, which are the best analogy with the given task. In geometry in special,

the analogies are tools to aid visualization rather than deep analogues.

The specialization gives the possibility to make particular consideration,

starting from the general one. The role of it is to show how nice is the entire

process completed and how the “chain” is closed.
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