
“szlavi˙torley” — 2009/6/7 — 17:20 — page 101 — #1

7/1 (2009), 101–117

Teaching Sorting in ICT

Péter Szlávi and Gábor Törley

Abstract. This article is aimed at considering how an algorithmic problem – more pre-
cisely a sorting problem – can be used in an informatics class in primary and secondary
education to make students mobilize the largest possible amount of their intellectual
skills in the problem solving process. We will be outlining a method which essentially
forces students to utilize their mathematical knowledge besides algorithmization in order
to provide an efficient solution. What is more, they are expected to use efficiently a tool
that has so far not been associated with creative thinking. Sorting is meant to be just
an example, through which our thoughts can easily be demonstrated, but – of course
the method of education outlined can be linked to several other algorithmic problems,
as well.

Key words and phrases: algorithm, Excel, algorithmic thinking, sorting, program effi-
ciency, combinatorics, permutations.

ZDM Subject Classification: C74-76, K24-26, Q34-36, R24-26, R74-76.

1. Introduction

Informatics as a school subject includes teaching algorithmic thinking, or

even teaching programming, as well as the most widespread application systems

like spreadsheets. [15] We assume that sorting can be introduced as a fruitful

topic in ICT teaching, which is what this article aims to discuss.

Sorting algorithms have an advantageous feature: namely, they may set a

challenge for both excellent and not so excellent programmers since the problem

itself can be formed in an easily understandable way, and there exist an obvious

algorithmic solution to it. If students are given a task that is based on any of the

Copyright c© 2009 by University of Debrecen



“szlavi˙torley” — 2009/6/7 — 17:20 — page 102 — #2

102 Péter Szlávi and Gábor Törley

sorting algorithms and they have to approach the solution comprehensively, not

only their algorithmic skills, but some “extra” features will also be utilized.

The well-known PISA assessment [9] has shown that there are few practical,

thought-provoking and mind-developing elements in today’s Hungarian education.

It will be clear that a varied approach to sorting – through algorithmization,

experimenting, using spreadsheets – can efficiently develop creative and practical

thinking.

1.1. Sorting Task

What is a sorting task (ST)? Arrange the elements of a sequence in such a

way that each member comes before every other member that is greater than

it from a previously defined aspect, which must be, of course, of such nature

that it can establish an order i.e. which of the two elements is smaller. If the

element is complex, the sorting “aspect” is often embodied by an element-like1

field or perhaps a function that is defined on the type of elements and returns

some element-like value.

1.2. Sorting is the Go of algorithmization

Sorting is a good “training field” regarding algorithmization, as sorting tasks

can easily be grasped even by beginners, and what is more, common sense can help

to find a correct solution. On the other hand, more advanced students can also

find it challenging when they look for a more efficient solution. Therefore, it may

provide students with various programming experience with thought-provoking

topics, just like the popular Japanese board game, the Go.

1.3. Varietas delectat

The peculiarity of the ST can also be approached from a point of view that it

is sensible to consider solution variants. There is not one single optimal solution.

It is regarded as rarity in the world of basic algorithms, which secondary school

students encounter. Just remember when algorithms are taught, programming

theorems [14] are just based on the idea that a task captured in a certain abstract

1Elementary types are pre-considered ordered, i.e. the question of “order” regarding them can

be answered.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 103 — #3

Teaching Sorting in ICT 103

way can have – more or less – one unambiguous abstract solution. Their “togeth-

erness” can be proved with formal tools [3], [13], although it is indifferent from

the point of view of secondary education.

There are two essential reasons for working out variants : 1) Following dif-

ferent “algorithmic philosophies” (concepts, ideas), different correct solutions can

be found. [8], [7]. 2) As for efficiency, variants behave differently. It is especially

striking when efficiency is defined generally. In [17] the author adds the dimension

of complexity to the two well-known “dimensions” of efficiency: speed (i.e. time

dimension, also known as time complexity) and memory space requirement (i.e.

space dimension, also known as space complexity). This new dimension is used

to indicate how much mental energy the program designer requires for compre-

hending the algorithm. We may find any quantitative measures of psychological

complexity, or any degrees appearing in the literature (the cyclomatic complexity

of a program, depth complexity, structural complexity, etc.). The application of

a thus generalized measure of efficiency makes it possible for the simple sorting

algorithms to become the “competitors” of even the quickest.

There is one additional educational benefit, similar to which students cannot

have met before while writing programs: namely, it is impossible to unambigu-

ously decide which one is better out of a pair of algorithms belonging to a task.

They must discuss the answer just like in mathematics at secondary school.2 It

follows from the above, that the goodness of an algorithm cannot be measured

by one single number, but one needs (at least) three.

Now it can be stated that the well-known Latin proverb of the heading “va-

riety is the spice of life” holds for applying ST in teaching algorithms as well.

2. Sorting in a nutshell

Below a few sentences will be dedicated to the essence and algorithm of sorts

that students will probably apply. (Algorithms are now confined only to the

body of the sorting procedure without its heading and declarations in a Pascal-

like language. The Swap procedure, which is not detailed below, swaps the values

of two variables given as parameters.)

The principle of Simple changing sort is that if the correlating order of the

couples in the comparison is wrong, they will be exchanged, i.e. it is a so-called

2Just think of e.g. the solution of the quadratic equation. When doing it, students make a

similar methodological discovery: but in the field of mathematics.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 104 — #4

104 Péter Szlávi and Gábor Törley

transposition sort. It is not too efficient as it contains too many superfluous

changes.

Figure 1. Simple changing sort

As for its philosophy, selection sort is selective: it always selects the next

sorted element (selection), and then swaps it into its position. Its operating

principle is not too sophisticated: first find the lowest element of the array, and

then swap it with the value in first position. This way that element gets to its

position. Then the same procedure is applied for elements 2 . . .N , too, when the

second element will get to its position in the sorted sequence, etc.

Figure 2. Selection sort

The basic principle of bubble sort is interchanging adjacent elements. In the

first pass starting from the end of the array, every item is compared to its left

neighbour. If they are in the wrong order, they will be swapped. At the end of

the first pass, the lowest item will surely get to its sorted position. In each next

pass we will start from the end of the array, but we will need fewer and fewer

comparisons as the beginning of the array is gradually becoming ordered. This is

transposition sort.

The operation of Insertion sort mostly resembles to picking up cards from

a table and putting them to their places. Take the next element, and find its

position in the already ordered subsequence to the left. As for it philosophy, it

is an insertion sort. Its principle: putting the next element to the right sorted

position in an already ordered subsequence.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 105 — #5

Teaching Sorting in ICT 105

Figure 3. Improved bubble sort

Shell sort is not an independent method, but it can be used together with

several sorting algorithms described above. The idea is that it greatly improves

sorting by comparing elements separated by a gap of several positions first, which

lets an element take “bigger steps” towards its expected position, thus making

the original method more efficient. This concept works extremely well in insertion

sort. [14], [8], [7]

3. The description of sorting

This chapter is dedicated to the structure and analysis of complex tasks

based on a sorting algorithm. To put it shortly: find one or more formulas to the

chosen (or possibly several) sorting algorithm(s) that well characterize(s) its/their

efficiency. Specifying the task is an important part of the solution; it is, eminently,

what is meant by the efficiency of an algorithm. It will be clarified below.

3.1. Characteristic features – in the language of mathematics

Special attention will be paid on the time behaviour of algorithms. Such

feature must be found that expresses a real operation. It is not a good idea to

choose, e.g., – the obvious – real running time, as it also depends on hardware,

moreover, on its momentary resources. Worse results will be measured on a slower

computer with less memory. If a sorting program is tested on several computers

of the same capacity, – at first sight – astoundingly, the time results will differ

even for the same inputs. Just remember that there may start, e.g., a virus

check in the background, which often happens if one uses today’s “multitasking”

operating systems, and immediately a new value is added to the time of sorting,



“szlavi˙torley” — 2009/6/7 — 17:20 — page 106 — #6

106 Péter Szlávi and Gábor Törley

which is absolutely independent of it. Of course, the same way it might happen

that one single computer returns different results for the same inputs at different

times, which is also unacceptable. If the above mentioned anomalies caused by

parallel running were set aside, the actual execution time would not be acceptable,

either. As it is obvious that running time sharply increases with the increase in

the “complexity” of the data to be sorted (e.g. the items of the sequence are

records), since more time is required to move more extensive data, although the

essence, the algorithm itself has not changed at all.

It follows that one needs some more general features like the two most typical

algorithmic operations: the number of a comparisons and the number of moves.

These parameters can really describe the “substantive” time efficiency of an al-

gorithm. So one can exclude any other “decorations” of an algorithm that ornate

the various algorithm variants more or less the same way. Accordingly, these

parameters are suitable for comparing various sorting algorithms.

It is easy to define the two extreme cases – the maximum and the minimum

running time: after determining the two inputs causing extreme runnings, one

must only follow the double cycle constituting the algorithm, while the execution

of the two operations important to us is counted. Note that it is not true in

each and every case that it would be easy to determine the input belonging

to the extreme running time of the given algorithm. In fact, the teacher must

call students’ attention this very fact. This calculation does not require “higher

academic knowledge”; one must only recognize the applicability of the sum of

arithmetic sequence so students’ mathematical knowledge of the secondary school

level is enough, but – fortunately! – absolute necessity. In the tables below, the

above mentioned features of algorithmized procedures are summed up, completed

with asymptotic notations common in mathematics. [1], [2], [5]

Aspect Min Max

Number of comparisons N(N − 1)/2 Θ(N 2)

Number of moves 0 3N(N − 1)/2 Θ(N 2)

Figure 4. Features of simple changing sort



“szlavi˙torley” — 2009/6/7 — 17:20 — page 107 — #7

Teaching Sorting in ICT 107

Aspect Min Max

Number of comparisons N(N − 1)/2 Θ(N 2)

Number of moves 3(N − 1) Θ(N)

Figure 5. Features of selection sort

Aspect Min Max

Number of comparisons N − 1 N(N − 1)/2 Ω(N), O(N 2)

Number of moves 0 3N(N − 1)/2 O(N 2)

Figure 6. Features of improved bubble sort

3.2. Let us examine a “typical case”!

Now the two extreme values, i.e. the best one and the worst one, are known.

Obviously, they occur fairly rarely. Therefore, some questions may arise: What

should be considered a “typical case”? How many operations does a typical case

require? Can the average of the best and worst cases be taken as the operation

requirement of a typical case? Unfortunately, it cannot, as a 4-item task below

clearly shows it.

To define a typical case, one will need the concepts of inversion and number of

inversions. (In class, of course, it is not necessary to state a precise definition and,

thus, perhaps frighten students off further thinking. It is absolutely satisfactory

to refer to the essence with examples.) Consider each sequence an N element

permutation. Thus N different elements are given. Take a permutation of these N

elements (e.g. the ordered one), and consider it the natural order. If two elements

are examined in a permutation, it can be stated which element comes before the

other one. Call it the relationship of the two elements. Say that the two elements

are in inversion if their relationship differs in the examined permutation and in

natural order. The number of couples in inversion is called inversion number.

[7], [4] Then examine all permutations of a sequence, and take the distribution

and average of inversion numbers. (Of course, instead of the precise concept

of distribution, refer to the easily conceivable, comprehensible counterpart, the

frequency histogram.) Why does it seem to be a better approach than the average

of the best and worst cases? It can be explained by the fact that the smaller the

inversion number of a sequence, the more ordered it is and the fewer elements



“szlavi˙torley” — 2009/6/7 — 17:20 — page 108 — #8

108 Péter Szlávi and Gábor Törley

are in a “wrong” position, so the fewer steps and comparisons will be necessary

to make the sequence sorted. That is to say, supposing an arbitrary sequence

might occur with the same chance, one will get the average inversion number

after performing the inversion calculations for all sequences.

Let us see a simple example for N = 4! Let us apply, for instance, improved

bubble sort! The number of comparisons of the algorithm is N−1 in the best case,

presently 3; and in the worst case N(N −1)/2, that is 6; its number of moves is 0

in the best case, and 3N(N − 1)/2 in the worst case, that is 18. (See Figure 6.)

The average of minimums and maximums for the number of comparisons is 4.5,

and for the number of moves is 9.

Let us see what result one will have by counting the inversions! The number

of all possible sequences with 4 different terms is 4! that is 24. In the table below

we will follow the possible cases for (1, 2, 3, 4) example sequence:

Figure 7. List of inversions for certain permutations (1, 2, 3, 4) in natu-
ral order

The frequency of inversions will be as follows:

Figure 8. The relative frequencies of inversion, in (1, 2, 3, 4) natural order

The sum of inversions is 72, their average is 3(= 72/24), in other words: the

average number of inversions is the inversion number weighted with the relative

frequency of inversions.

The above frequency table shows that it is not reasonable to estimate the

average running time with the average of the minimum and maximum, as the

relative frequency of these extreme permutations – and thus their role affecting

general behaviour – will dramatically decrease with the increase of N .



“szlavi˙torley” — 2009/6/7 — 17:20 — page 109 — #9

Teaching Sorting in ICT 109

Unfortunately, it can be seen that this level of knowledge is already beyond

secondary school mathematics. Does that mean that we will have to renounce the

formula of “general behaviour”, the most expressive comparison of algorithms?

3.3. Two ways – two subtasks

Now the more complete task that is based on sorting algorithms can be formed

this way: compare the sorting algorithms by their time efficiency: by giving the

expected minimum, maximum and average numbers of comparisons and moves:

(MinH(N), AveH(N), MaxH(N)); MinM(N), AveM(N), MaxM(N))).

Let us now return to the question raised at the end of the previous chapter:

Should we renounce the formula of “average behaviour”? Definitely, not! Only

the approach must be changed. Let us rely on the students’ existing knowledge.

They can algorithmize to a certain extent, and so can they use a spreadsheet.

The concepts of inversion and frequency can be introduced, but word them in

such a simple way that a secondary school student can understand them. What

do we want to know?

The plan for proceeding: we are going to draft two subtasks related to the

original question, to which a program should be written, respectively. These

programs will produce outputs only to some small parameter values, and we will

try to set up the required formulas relying on the results. When making the

formulas, we will intensively use the usual services of spreadsheets.

With the first program, we will tabulate inversion frequency to certain N ,

which will then help us find a formula to the average inversion number (see Fig-

ure 9.). This application still displays the values of factorial, the average and

sum of inversion and that of the greatest inversion to N . By intuition, the latter

values represent important information (the sought function might depend on N

through one of them), and it does not pose too much difficulty for the program

to define them. For a programmer it is nothing but “a piece of cake”. It also

writes out the displayed values in a file so that it could also be processed with a

spreadsheet.

When using the program, one will be sad to see that after certain N , running

becomes unbearably slow. Finding the formula will have to be based on the so far

generated frequency sequences. It is at this point that we will turn to spreadsheets

for help for the first time. Now we will have to notice a connection hidden in a

heap of numbers of a table filled from the generated file. We will try pot-luck

to find this connection. A spreadsheet specifically suits this empiric approach.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 110 — #10

110 Péter Szlávi and Gábor Törley

Figure 9. The program counting inversion frequency with a table in
the background in which we hunt for connections. (In this case let us
write the supposed formula in column I.)

Figure 10 shows the surprising connection with which the inversion distribution

for N = 9 was determined from the data generated to N = 8.

Our trials were immensely naive, but in the end they proved to be practical.

We only made the sum and difference of the values of the previous row and column

in order to generate the value of a given cell, whereupon the following connections

were outlined. Let freq be an m×n matrix (freq∈ N
m×n), where n is the value

up to which the frequency of the inversion is examined, and m the maximum

inversion number of a sequence with n elements (= n(n − 1)/2). n is indexed

starting from 1, whereas m from 0. Discoveries:

1. freq(0, i) =1,

2. freq(1, i) = i - 1,

3. freq(j, i) = freq(j - 1,i) +freq(j,i -1), j = 2..i - 1 – that is the sum of elements

one to the top and one to the left;

4. freq(j, i) =freq(j - 1,i) + freq(j,i - 1) -freq(j - i,i - 1), j = i..i*(i - 1)/2 – that is

the previous formula has slightly been modified: the element in the column

to the left of freq(j, i), with i rows above is subtracted from it.3

3See: [7] pp. 28–29



“szlavi˙torley” — 2009/6/7 — 17:20 — page 111 — #11

Teaching Sorting in ICT 111

Figure 10 clearly shows that this way distribution N = 9 could have been de-

termined from distribution N = 8, and the checks have confirmed the correct

operation of the formula for the previous cases.

Figure 10. The table “processing” the data of the program counting
inversion frequency, and the surprising connection in column I.

Having set up such a formula, we have reached a fine educational opportunity.

We have now the chance to lead our students open to mathematical thinking

into further activities unknown in traditional programming, as they are trying to

prove the 3. and 4. formulas. The proving in fact can be done following basic

considerations, as recursion automatically brings up the guiding principle. Let us

see, as an example, the proof of the 3. formula:

freq(j,i) indicates those series which contain j inversions. The first member

of the formula (freq(j - 1,i)) remounts to those series of the length of i which have

one less inversion, while the other (freq(j,i - 1)) operates with the one shorter.

From the latter, it can be suspected that it has something to do with a special

element fixed in a special place. Indeed it does: let us now divide in two the

series of the length of i. Into one of them, let us put those whose last (that

is, the i) element is of the biggest value, while into the other all the rest goes.

Consequently, in the two groups the total of the series will be freq(j,i), and,

obviously, in one freq(j,i - 1) and in the other freq(j - 1,i). The number of those

series of the length of i containing j inversions, which have the biggest in the

end, will be freq(j,i - 1). It is so because in relation to the others the biggest is

positioned correctly, that is, it does not increase the number of inversions, so it is

the preceding i - 1 element which is responsible for the j inversion. The bringing



“szlavi˙torley” — 2009/6/7 — 17:20 — page 112 — #12

112 Péter Szlávi and Gábor Törley

out of the other element, however, requires a trickier idea. What should be played

on is that the biggest element is not in its place. In such a case, it can be moved

one backward, and like this it will be in a “wrong” position relative to one less

element, decreasing the number of inversions with one. Fulfilling this with each

series of the first group, we lessen the number of inversions of each. In this way,

we have brought their number to the number of the series with one less inversion

(freq(j - 1,i)), justifying the 3. connection. The other proof is more complicated

and lengthy, so we set it aside now.

The connection found this way then must be adjusted to the algorithms, i.e.

the inversion number, the number of comparisons, and the number of moves can

be related only by considering the specific algorithms. No matter how painful it

is, this relationship cannot be easily set up. The problem is that it is not enough

to have the inversion number, but it is just as important – it is easy to see – to

know the whereabouts of the inversion.4 This way there cannot be found such

a formula in which there are only terms depending on the inversion number. So

this way we cannot come closer to our original goal. Indisputably, however, this

little sideline has been useful to make us carefully consider: efficiency indices are

strongly related to the features of permutations, the inversion number, and the

whereabouts of inversions. Now let us return to our original aim and choose a

different approach!

The second program (see Figure 11) determines the average empirically, i.e.

it generates all the possible permutations for N , and then computes the best

and worst cases, the average numbers of comparisons and moves one by one by

sorting algorithms. It can be seen that as N increases, the program will become

unbearably slow again. The continuation is just like before: connection analysis

using the so far generated data with the help of a spreadsheet.

The generated data are gathered in a table again to find connections among

them. The table has been divided into three ranges. The values generated by

the program were loaded into the first one: the minimum, average and maximum

values of comparisons and moves belonging to the examined sorting, for a certain

N . The second part of the table is the “field” for experimentation. The supposed

4A new sub-task may be set that pries into this question. Namely, is it true that permutations

with the identical inversion numbers cannot necessarily be sorted with identical numbers of

comparisons and moves. Idea: with a little change in the previous program, one can have a

solution that will write all the characteristic features of a permutation related to sorting in one

file: the permutation itself, the inversion number, the number of comparisons, and the number

of moves, then reading them in a spreadsheet and sorting them by inversion number, the above

question can be answered on the face of it.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 113 — #13

Teaching Sorting in ICT 113

Figure 11. An output of a program characterizing sorting empirically.

formula depending on N was entered here, and here appears our predicted value

belonging to a given N . Whereas the third part of the table shows the difference

between the previous two coherent values. (See Figure 12.) Our idea on how to

use the spreadsheet is to vary the formulas in the middle part of the table until

– according to our expectations – the part of the table of difference contains only

0 values.

We are particularly interested in the formulas of averages, since – as it was

claimed before – students are able to set up formulas belonging to minimums

and maximums using elementary methods. It is obvious that we cannot aim at

introducing the world of numerical methods to students. Relying on the formulas

received for the maximum, students foresee that the average will resemble to some

quadratic formula, which seems credible on the “structure” of algorithms: every

sorting algorithm is essentially a double loop. When searching for a formula, we

started from the formula determining the maximum, because that seemed most

expressive. This formula was varied by multiplying it with a constant, and/or

adding a constant value. Note that the table contains the current value of N in

column A of the given row, thus a connection more sophisticated than the linear

transformation regarding the maximum can be constructed. Figure 13 shows5 that

5Background colour and automatic formatting have been used to highlight the difference ac-

ceptably close to 0 (absolute difference ≤ 0, 5), so that the values that are somehow problematic

can stick out.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 114 — #14

114 Péter Szlávi and Gábor Törley

with simple algorithms there was no or little difference. With more complicated

ones, however, the greater N was, the farther the value of the formula got from the

real average, but these differences were less than 1% in proportion (= difference

/ expected value), thus, they give a reasonable picture about the development of

the real average for the examined N . Presumably, they describe well the average

asymptotically, too.

The above “two ways” example show that a fairly good picture has been

received about the general behaviour of our algorithms, after turning to a spread-

sheet for help, through experimentations and with some creativity.

Figure 12. The spreadsheet examination of the output of a program
empirically characterizing sorting – table structure.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 115 — #15

Teaching Sorting in ICT 115

Figure 13. The spreadsheet examination of the output of a program
empirically characterizing sorting.

4. Summary

In this article sorting as a programming task has been examined from the

point of view of how to use it in ICT classes. It has been stated that classroom

use may have several advantages. It can be seen that regarding the making of

algorithms, it poses worthwhile problems for students of all levels, and it enables

them to further refine their algorithmic knowledge. Above it has just been re-

ferred to that those who are already over elementary sorting will obviously find

real challenge in trying out or individually discovering some more “professional”

documented sort (e.g. Shell sort, Quicksort, Heapsort). It should be added that

when writing the program of the task mentioned secondly, students will have to

tackle reasonably an extra challenge that comes from the increase of the number

of permutations when N is greater. Obviously, only experienced programmers

will be able to overcome this problem.

In order for students to be able to solve the complex task, they will have

to become familiar with the necessary algorithm(s). What is more, without an

accurate analysis of algorithms, they will not reach their goal. It is important



“szlavi˙torley” — 2009/6/7 — 17:20 — page 116 — #16

116 Péter Szlávi and Gábor Törley

to stress: in our concept the main emphasis is given to the algorithm or the

main principle of the algorithm, the profound acquisition of which is an explicit

objective.

Another characteristics of the problem-solving strategy is that it requires

students to apply an all-round strategy. Besides the algorithmization of the basic

problem, they should make fundamental, mathematical considerations. The way

to reaching the objective goes through solving some auxiliary problems, which

will require using certain application systems, e.g., a spreadsheet and perhaps –

writing some simple programs that can usually be traced back to patterns.

Consequently, students will develop both their algorithm-creating and their

mathematical knowledge, moreover, they will mobilize their creativity, experiment-

ing skills, and by making them use several tools to solve a problem, their general

knowledge will also become more complex and “accessible.”

Finally, we claim that problems can be formulated in this way not only to

the above examined sorting algorithms, but it can well be used with problems

belonging to other algorithm classes. For instance, problems that are connected

to graphs [8], [1], [16], [18] or can be solved with the help of dynamic programming

[11], [12], backtrack [14] or greedy algorithm [10] can provide an obvious starting

point for the above method, since “formally” there are – one can say – solution

variants to such problems and the above described efficiency analysis approach

is raised by nature if one wants to choose one out of them. We would not like,

however, to claim that mathematical and/or spreadsheet knowledge can only be

applied for the sake of efficiency analysis of an algorithm.

References

[1] T. Cormen, C. Lieserson, R. Rivest and C. Stein, Introduction to Algorithms, MIT
Press and McGraw-Hill, 2001.

[2] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley
Publishing Company, 1994.

[3] É. Harangozó, P. Szlávi and L. Zsakó, Joining Programming Theorems, a Practical
Approach to Program Building, in: Annales Universitatis Scientiarum Budapesti-
nensis. Sectio Computatorica 17 (1998), 155–172.

[4] http://hu.wikipedia.org/wiki/Permut%C3%A1ci%C3%B3.

[5] http://en.wikipedia.org/wiki/Big O notation.

[6] http://www.sei.cmu.edu/str/descriptions/cyclomatic body.html.

[7] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition), Addison-Wesley Professional, 1998.



“szlavi˙torley” — 2009/6/7 — 17:20 — page 117 — #17

Teaching Sorting in ICT 117

[8] J. Nievergelt, J. C. Farrar and E. M. Reingold, Computer Approaches to Mathe-
matical Problems, Prentice-Hall, New Jersey, USA, 1977.

[9] OECD, The PISA 2003 assessment framework, Mathematics, reading, science and
problem solving knowledge and skills, OECD, Paris, 2003.

[10] P. Szlávi, Mohó algoritmusok módszertana (Methodology of Greedy Algorithms),
lecture manuscript, 2003,
http://people.inf.elte.hu/∼ szlavi/InfoSavaria05/MohoAlgoritmusok.pdf.

[11] P. Szlávi, Dinamikus programozás (Dynamic Programming), lecture manuscript,
2007, http://people.inf.elte.hu/∼szlavi/PrM4felev/Pdf/DinamikusProgramozas.pdf.

[12] P. Szlávi, Dinamikus programozás – Esettanulmányok (Dynamic Programming –
Case Studies), lecture manuscript, 2004,
http://people.inf.elte.hu/∼szlavi/PrM4felev/DinaProg/DinaPro.pdf.

[13] P. Szlávi, Formális módszerek a programozásban (Formal Methods in Program-
ming), lecture manuscript, 2003,
http://people.inf.elte.hu/szlavi/PrM4felev/FormModsz.ppt.

[14] P. Szlávi and L. Zsakó, Módszeres programozás – Programozási tételek (System-
atic Programming – Typical Algorithms of Programming), ELTE TTK Informatikai
Tanszékcsoport, Budapest, 1994.

[15] P. Szlávi and L. Zsakó, Programming Versus Application, in: Informatics Education
– The Bridge between Using and Understanding Computers; ISSEP 06 Lecture
Notes in Computer Science, 2006, 48–58.

[16] P. Szlávi and L. Zsakó, Módszeres programozás – Gráfok (Systematic Programming
– Graphs), ELTE IK, Budapest, 2004.

[17] L. Zsakó, Módszeres programozás – Hatékonyság (Systematic Programming – Pro-
gram Efficiency), ELTE TTK Informatikai Tanszékcsoport, Budapest, 1991.

[18] L. Zsakó, Variations for Spanning Trees, in: Annales Mathematicae at Informaticae
33 (2006), 151–165.

PÉTER SZLÁVI and GÁBOR TÖRLEY

DEPARTMENT OF MEDIA AND EDUCATIONAL INFORMATICS

FACULTY OF INFORMATICS

EÖTVÖS LORÁND UNIVERSITY

BUDAPEST

HUNGARY

E-mail: szlavip@elte.hu

E-mail: pezsgo@elte.hu

(Received March, 2008)


