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Ildikó Perjési-Hámori and Csaba Sárvári

Abstract. In this paper, some examples of Fourier series and partial difference equations
will be shown to demonstrate opportunities for cas use in various circumstances. The
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will be used to allow the use of the same worksheet in different ways.
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1. Introduction

The Pécs University, Pollack Mihály Faculty of Engineering has launched the

two-level (BSC and MSc) educational system, in conjunction with the Bologna

process, in 2006. As a result of this process fewer mathematics contact lessons are

in the basic level, although the required mathematics themes are not reduced. In

order to reach the parallel goals of the undergraduate mathematics it is necessary

to make contact

• with the practice (first of all, whom, who will go to the labor market after

graduating at Bachelor level),

• with the Master level mathematics and engineering subjects.

Copyright c© 2009 by University of Debrecen
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The Maple computer algebra system is used in the teaching-learning process,

in the basic mathematics courses of informatics, mechanical-, electrical- and civil

engineering since 1996. The introduction of the usage of computer algebra is

gradually only for visualization, on the lectures (in the firs semester), for time-

consuming numerical calculations after chalk-and talk practicing, at the end of the

semester (in the second semester), for symbolical calculations and for complicated

applications – all lessons in computer laboratories (in the third semester).

In this paper some example is shown in themes of Fourier series and partial

difference equations to demonstrate the possibilities of cas in several circum-

stances.

The mathematics curriculum of the engineering and informatics obliges the

discussion of the concept of the Fourier-series and partial differential equations at

the end of students’ third semester. Sometimes (particularly lack of time) they

are mentioned only on lecture, there is no trainings for the practice. There are

courses, where the practical lessons are in a computer laboratory in the whole

semester. In this case the students get deep experiences in using cas. There

are students (especially students of informatics) who get acquainted with the

programming techniques of cas, as well. In this paper the usage of cas in the

above mentioned cases is demonstrated with help of examples.

2. Curriculum based modularization

The starting point is the exploration of connections between cas and cur-

riculum. Recognizing operative knowledge as a critical component of “doing”

mathematics, thoughtful modularization of course material is a crucial first step

in the successful implementation of cas in classroom instruction. We use the con-

cept of module with the following meaning: The module is more or less complex

and connected system of generalized knowledge, which can be called as unified

whole procedure, without to be executed. The cas module is an immediately

callable cognitive unit. (Dörfler, [3]) The functions of the cas module are

(i) Reduction of burden of the thinking

(ii) Decrease of the complexity.

First of all, we have to take into consideration that mathematics content and

students’ learning of the content, by its very nature, has a modular structure. If

teachers wish to make use of cas-based functions, programs, or scripts (i.e. “cas

modules”) in classroom instruction, these cas functions, programs, and scripts
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must be incorporated into instruction in a way that is compatible with students’

current mathematical understandings. The modularization must be synchronized

with the content and learners of the course. This is true whether the module is

“built in” with the cas or constructed by teachers or students.

The effectiveness of mathematical knowledge, in a narrow sense the com-

prehension itself, can only is approached from an organizational perspective of

knowledge. A mathematical idea, procedure or fact can only be understood if

its mental representation is part of the network of representations. The degree

of the comprehension is determined by the number and strength of connections.

(Hiebert and Carpenter, 1992 [4])

This view of mathematics comprehension is relevant with regard to the use

of cas modules in at least two ways. Firstly, the use of a cas module allows

students the time and cognitive capacity for building more connections among

new knowledge elements. Secondly, once the types of cas modules to be used are

determined, the primary issue to be addressed is the role of the new knowledge-

element in the curriculum. If detailed understanding of the elaborated procedure

is necessary afterwards – for instance, to work meaningfully with other elements

– then teachers should carry out a white box /black box modularization. If know-

ing the structure and the type of elaboration of mental picture of the processed

algorithm is not necessary to later thickening of the knowing representation net,

then we can apply the outsourcing-principle. (Peschek and Schneider[5]). This

means that in these cases is allowed and useful the application of cas module

without knowing its inner structure.

In our teaching practice, modularization is a dynamic process. (Sárvári,

[6]) Firstly throughout our construction of complex cas-procedures we apply the

following model:

• Firstly, we construct a series of procedural steps from algorithm primitives

(i.e. pseudocode phase).

• Then we construct the parts of the complete algorithm as stand-alone proce-

dures (i.e. semi-automatic phase).

• At the end, we paste the working parts together using the mathematical

concept of composition (i.e. functional programming phase).

Secondly we use the white box / black box modularization as it mentioned by

B. Buchberger (2003) [2]. The white-box black-box principle is recursive and it is

used in frame of creativity or invention spiral. Negotiation of all concepts of all

algorithms begins in white box phase. In the next step we create a new concept,

and can use the previous algorithms-modules- as black box and so on.
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3. Teaching Fourier series

Problem: Let’s see the group of the periodical functions, which have signifi-

cant role in engineering practice.

Assume that y = f(x) is given in the range −π to π and

f(x) = f(x + 2kπ),

where k is an arbitrary integer number, thus f is periodic with period 2π. Assume,

that f can be represented by an infinite series, i.e.

f(x) = a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + . . . + an cos(nx)

+ bn sin(nx) + . . . = a0 +

∞
∑

n=1

(an cos(nx) + bn sin(nx)).

Our goal is to determine a0, a1, b1, a2, b2, . . . coefficients. We would like to

know, how and in what kind of conditions can be represented by infinite series of

sinus and cosines?

Pseudo code phase

Firstly will be detailed theoretical basis and given series of procedural steps

(i.e. pseudo code). In this case the procedural steps are the computing of the

coefficients.

White-box: if we have enough time, students have basic knowledge of integra-

tion, and series of function.

Let’s suppose that the series is convergent, and its sum is f(x). For the determi-

nation of a0, a1, b1, a2, b2, . . . , coefficients we have to prove some simply lemmas.

White-box: (More time) prove the lemmas by hand and after it use Maple

only for checking.

Black-box: (Less time required) solving them with int command.

Multiply each side of the equation by cos(nx)

f(x) cos(nx) = a0 cos(nx) + a1 cos(x) cos(nx) + b1 sin(x) cos(nx)

+ . . . + am cos(nx) cos(nx) + . . .

Because of the Lemmas, all integrals, but an cos(nx) cos(nx) are equal to 0, and

this one is equal to π.
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So

an =

∫ π

−π
f(x) cos(nx)dx

π
and

bn =

∫ π

−π
f(x) sin(nx)dx

π

Semi-automatic phase

We construct the parts of the complete algorithm a stand-alone procedures

or use the built-in commands (functions, procedures) of Maple

> a0:=1/(2*Pi)*int(f(x),x=-Pi..Pi);

> a:=k->1/Pi*int(f(x)*cos(k*x),x=-Pi..Pi);

> b:=k->1/Pi*int(f(x)*sin(k*x),x=-Pi..Pi);

> F_partial_sum:=a0+Sum(a(k)*cos(k*x)+b(k)*sin(k*x),k=1..n);

> F_series:=a0+Sum(a(k)*cos(k*x)+b(k)*sin(k*x),k=1..infinity);

In this phase the importance is on the applications. Let’s demonstrate on the

example of

f := x → ex

function. The Fourier-coefficients:

a0 =
1

2

(

− 1 + e(2π)
)

e(−π)

π

a(k) =

(

− cos(πk) + k sin(πk) + e(2π) cos(πk) + e(2π)k sin(πk)
)

e(−π)

π(1 + k2)

b(k) = −

(

− k cos(πk) − sin(πk) + e(2π)k cos(πk) − e(2π) sin(πk)
)

e(−π)

π(1 + k2)
.

The fourth partial sum is:

1

2

(

− 1 + e(2π)
)

e(−π)

π
+

+
4
∑

k∼=1

(

(−1)k∼(−1 + e(2π)e(−π) cos(k∼x)

π(1 + k∼2)
−

k∼(−1)k∼(−1 + e(2π))e(−π) sin(k∼x)

π(1 + k∼2)

)

.

Using command value we can evaluate the expression:

1

2

(−1 + e(2π))e(−π)

π
−

1

2

(−1 + e(2π))e(−π) cos(x)

π
+

1

2

(−1 + e(2π))e(−π) sin(x)

π
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+
1

5

(−1 + e(2π))e(−π) cos(2x)

π
−

2

5

(−1 + e(2π))e(−π) sin(2x)

π

−
1

10

(−1 + e(2π))e(−π) cos(3x)

π
+

3

10

(−1 + e(2π))e(−π) sin(3x)

π

+
1

17

(−1 + e(2π))e(−π) cos(4x)

π
−

4

17

(−1 + e(2π))e(−π) sin(4x)

π
.

To get to know more about the size of the coefficients, we use the evalf

command.

3.676077910− 3.676077910 cos(x) + 3.676077910 sin(x) + 1.470431164 cos(2.x)

− 2.940862328 sin(2.x) − 0.7352155821 cos(3.x) + 2.205646746 sin(3.x)

+ 0.4324797542 cos(4.x) − 1.729919016 sin(4.x).

Plotting together the function and some of the partial sum of the series are

shown on Figure 1.

Figure 1. f(x) = ex and partial sums of it’s Fourier series
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Automatic phase (functional programming phase)

White-box: with those who want to know more about how to construct Maple

programs we discuss the different possibilities of writing procedures for com-

puting of Fourier series. The students guided by teacher construct procedure

to animate the function and the partial sums. (informatics students)

Black-box: – more time required – for those who has the basic knowledge of

the development of a series, but he/she wants to use it in the engineering

practice.

– less time required – for those who does not want to know why but only

how to solve the problem.

In this phase we paste the working parts together using the mathematical

concept of composition, and construct a procedure, namely Fourier procedure:

> Fourier:=proc(f)

local n;

global a0,a,b:

a0:=1/(2*Pi)*int(f(x),x=-Pi..Pi);

b:=k->1/Pi*int(f(x)*sin(k*x),x=-Pi..Pi);

unapply(eval(a0+Sum(a(k)*cos(k*x)+b(k)*sin(k*x),k=1..n)),x,n);

end:

Now apply it for an example. Find the Fourier series of

f(x) =











(x + π)2

π
−π ≤ x and x ≤ 0

(x − π)2

π
0 < x and x ≤ π

f(x + 2kπ) = f(x), where k is an arbitrary integer number.

> f:=x->piecewise(-Pi<=x and x<=0,1/Pi*(x+Pi)^2,0<x and

x<=Pi,1/Pi*(x-Pi)^2);

Call the procedure Fourier for the function f .

F:=Fourier(f):

F := (x, n) →
π

3
+

(

n
∑

k=1

(

−
4(sin(πk) − πk) cos(kx)

π2k3

)

)

The 10. partial sum is:

> value(F(x,10));
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π

3
+

4 cos(x)

π
+

cos(2x)

π
+

4

9

cos(3x)

π
+

1

4

cos(4x)

π
+

4

25

cos(5x)

π
+

1

9

cos(6x)

π

+
4

49

cos(7x)

π
+

1

16

cos(8x)

π
+

4

81

cos(9x)

π
+

1

25

cos(10x)

π

> ’f(x)’=F(x,infinity);

f(x) =
π

3
+

(

∞
∑

k∼=1

(

4 cos(k∼x)

πk∼2

)

)

.

A procedure can be written to animate the function and the partial sums:

> picture:=proc(k)

local n,N,kep:

N:=k:

for n from 1 to N do

kep||n:=plot([F(x,n),f(x)],x=-

Pi..Pi,color=[red,blue],thickness=[2,2],discont=true):

od:

plots[display]([kep||(1..N)],insequence=true);

end:

Figure 2. Fourier series of a piecewise function
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4. Teaching partial differential equations

4.1. Vibration of a cord (Hyperbolic type partial differential equation)

The problem is: Let’s compute the vertical displacement u(x, t) of a cord

with length L and fixed endpoints, where t is time and x is distance along the

cord (Figure 3). For each instance in this the problem, we must specify the initial

displacement of the cord f(x), the initial speed of the cord g(x) and the horizontal

wave speed c.

Figure 3. Vibration of a cord

After physical considerations the one-dimensional wave equation in Cartesian

coordinates is:
∂2

∂t2
u(x, t) = α2

(

∂2

∂x2
u(x, t)

)

subject to the boundary conditions:

u(0, t) = 0,

u(L, t) = 0, (fixed endpoints)

and initial conditions:

u(x, 0) = f(x), (initial displacement of the cord)

∂

∂t
u(x, 0) = g(x) (initial speed of the cord).

Here the physical explanation is a black-box type consideration in lesson math-

ematics, and a white-box type in lesson mechanics.
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60 Ildikó Perjési-Hámori and Csaba Sárvári

4.1.1. The detailed explanation of the solution

The explanation of the solution of the differential equation is white-box type

if there is enough time for students to have the basic knowledge of the solution

of the ordinary differential equations and Fourier series.

The solutions are search of the form u(x, t) = X(x)T (t) by substituting

X(x)T (t) into Pde. So the second order Pde is changed to two Ode.

∂2

∂x2
u(x, t) =

(

d2

dx2
X(x)

)

T (t)

∂2

∂t2
u(x, t) =

(

d2

dt2
T (t)

)

X(x).

After the substitution:

d2

dt2
T (t)

T (t)
=

α2
(

d2

dx2 X(x)
)

X(x)

the variables. x and t is independent of each other, each side must be fixed con-

stant, β2 The task is to solve two, second ordered ordinary differential equations.

• White-box: (More time required) solve these equations by hand and after it

they use Maple for only checking their solution.

• Black-box: (Less time required) solving them with Maple’s dsolve command.

de1 :=

(

d2

dt2
T (t)

)

+ β2T (t) = 0

de2 :=

(

d2

dx2
X(x)

)

+
β2X(x)

α2
= 0

Sol 1 := T (t) = A sin(βt) + B cos(βt)

Sol 2 := X(x) = C sin

(

βx

α

)

+ E cos

(

βx

α

)

.

The “step by step” solution of the partial differential equation with help of Maple

Sol := u(x, t) = (A sin(βt) + B cos(βt))

(

C sin

(

βx

α

)

+ E cos

(

βx

α

))

.

Here A, B, C, E, β are arbitrary constants. Their values depend on the initial

and boundary conditions.

The first boundary condition u(0, t) = 0, so

eq1 := 0 = 1. (A sin(βt) + B cos(βt))E.
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Its mean, that for every t:

E := 0.

From the second boundary condition u(L, t) = 0, so

eq2 := 0 = (A sin(βt) + B cos(βt))C sin

(

βL

α

)

C is not 0, so sin
(

βL

α

)

has to be 0. It gives a sequence of solutions for β. Assuming

k is an integer:

eq3 :=
βkL

α
= kπ

βk :=
kπα

L

Solk := uk(x, t) =

(

Ak sin

(

kπαt

L

)

+ Bk cos

(

kπαt

L

))

Ck sin

(

kπx

L

)

.

Expand the right hand side:

Solk :=uk(x, t) = Ck sin

(

kπx

L

)

Ak sin

(

kπαt

L

)

+Ck sin

(

kπx

L

)

Bk cos

(

kπαt

L

)

.

The linear combination of the solutions is solutions as well. This will give the

collection of vibrations of the string and the goal is to sum them.

Solution := u(x, t) =

∞
∑

k=1

uk(x, t).

Substitute ak := CkAk, bk := CkBk:

Sol := u(x, t) =

∞
∑

k=1

(

ak sin

(

kπx

L

)

sin

(

kπαt

L

)

+ bk sin

(

kπx

L

)

cos

(

kπαt

L

))

.

Now the goal is to determine ak, and bk.

From the initial conditions u(x, 0) = f(x), and ∂
∂t

u(x, 0) = g(x),

f(x) =

∞
∑

k=1

bk sin

(

kπx

L

)

g(x) =
∞
∑

k=1

ak sin
(

kπx
L

)

kπα

L
.



“Perjesi˙Sarvari” — 2009/5/28 — 0:35 — page 62 — #12
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In these equations, bk are the coefficients of the poor sinus Fourier series of f ,

if the domain of f is enlarged to be periodical to 2L, uneven function. This is

the so called Fourier procedure where the coefficients ak can be calculated. After

performing this procedure all constants are known in the general solution from

the boundary and initial conditions, or in other word, the particular solution is

determined.

4.1.2. With help of built in procedure

It can be used in two ways:

• black-box mode if there is no time or students have only little knowledge of

the solution of the differential equation and Fourier series

• white-box mode after the detailed explanation for experiments or solving more

complicated problems.

With help of Maple VectorCalculus package the wave equation is written down

using the Laplacian function with α = 1, L = 1.

> Cord_Eqn := {diff( u(x,t), t, t) = Laplacian( u(x,t),

’cartesian’[x]) };

Cord Eqn :=

{

∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t)

}

The specified boundary conditions are that the cord is fixed at both ends and

has 0 initial speeds.

BC1 := {D2(u)(x, 0) = 0, u(0, t) = 0, u(π, t) = 0}.

Two cases are shown below to demonstrate the interactive possibilities of Maple:

Case 1: Cord is plucked from the center

BC2 :=







u(x, 0) =







x −x ≤ 0 and x −
π

2
≤ 0

−x + π −x +
π

2
< 0 and x − π ≤ 0







.

The Pde boundary-value problem is solved numerically with the pdsolve com-

mand and numeric option specified. The accuracy of the solution is set by spec-

ifying the time step and space step of the discretisation over the distance-time

rectangle. Maple delivered the solution as a Maple module. The module provides

functions for viewing the solution as plots (plot and plot3d), animations over time

(animate) and numerical values (value).
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> sol:=pdsolve( Cord_Eqn, BC1 union BC2, numeric,

spacestep=1/200, timestep=1/100);

sol := module ( ) export plot,plot3d,animate,value,settings; . . . end module

> sol:-animate( u(x,t) ,t=0..2*Pi, frames=30,

labels=["x","u(x,t)"], labelfont=[TIMES,ROMAN,14],

scaling=constrained);

(Figure 4.)

Figure 4. Elements of the animation of a cord with BC1 boundary condition

> CordTemperature := sol :- value();

CordTemperature := proc ( ) . . . end proc.

The cord temperature value at a discreet point, in a given time:

> CordTemperature( .5, 3 );

[x = 0.5, t = 3., u(x, t) = −0.499767804920668746].

Case 2: Cord starts in the shape of different trigonometric function (Figure 5.)

> sol:-animate( [[u(x,t) , thickness=1,color=black],

[-u(x,t)/2-sin(4*x),thickness=2 ,color=black ] ,

[u(x,t)/2+sin(6*x) ,thickness=3,color=black]], t=0..2*Pi,

frames=8,labels=["x","u(x,t)"], labelfont=[TIMES,ROMAN,14],

scaling=constrained);
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This built in procedure is very useful for these experiments which have dif-

ferent boundary conditions and only if we want visualize the solution to get the

results only in some discrete points.

Figure 5. Elements of the animation of a cord with different trigono-
metric boundary conditions

4.2. Heat flow in a rod (time dependence, one dimension)
(Parabolic type partial differential equation)

The following problem is to compute the temperature u(x, t) over a rod,

where t is time and x is distance along the rod. (Figure 6.) The assumption

is that the ends of the rod maintain a constant temperature. For each part of

the problem, we must specify the initial heat distribution f(x) and the thermal

diffusivity α of the rod.

The time-dependent, one-dimensional heat equation in Cartesian coordinates:

∂

∂t
u = α2

(

∂2

∂x2
u

)

subject to the boundary conditions:

u(0, t) = 0,

u(1, t) = 0,
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Figure 6. Heat flow in a rod

the initial condition

u(x, 0) = f(x).

The detailed explanation of the solution is used as a white-box :

• if there is sufficient time available,

• if the students have basic knowledge of the solution of the ordinary differential

equation, and Fourier series

• if the wave equation was not solved earlier (for example we solve the wave

equation with one group and the heat equation with another group).

The built in procedure is used:

• white-box: for experimentation

• black-box:

◦ if no time available,

◦ if the students have only few knowledge of the solution of the differential

equation, and Fourier series.

We write down the heat equation using the Laplacian function. The assumption

is, that α2 = 1

>Heat_Eqn := {diff( u(x,t), t) = Laplacian( u(x,t),

’cartesian’[x]) };

Heat Eqn :=
{

∂
∂t

u(x, t) = ∂2

∂x2 u(x, t)
}



“Perjesi˙Sarvari” — 2009/5/28 — 0:35 — page 66 — #16

66 Ildikó Perjési-Hámori and Csaba Sárvári

The boundary conditions are the ends of the rod are kept at a constant temper-

ature and the initial temperature distribution is f(x).

BCs :=
{

u(0, t) = 0, u(1, t) = 0, u(x, 0) = (−x + 1)
(

− e(−10x) + 1
)

}

>Heat_Solution := pdsolve( Heat_Eqn, BCs, numeric,

timestep=1/100, spacestep=1/100):

>Heat_Solution :- plot3d(u(x,t), t=0..0.18, shading=zhue,

axes=boxed, labels=["x","t","u(x,t)"],

labelfont=[TIMES,ROMAN,16]);

(Figure 7.)

Figure 7. The time-dependent temperature distribution in a rod

To get numerical values the value procedure from the solution’s module is used.

>RodTemperature := Heat_Solution :- value();

The temperature at x = .5, t = 3

[

x = 0.5, t = 3., u(x, t) = 0.798817965072981856 10−13
]

.

5. Conclusions

Probably the most basic, most complex, and from didactic point of view the

most critical question about the usage of cas concerns the usage of the mod-

ules. On the one hand using modules cas executes the majority of the operative
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activities. On the other hand it renders different delineation and representation

methods in quick and easy access. Due these two functions experiment-based

explorative learning gains an effective tool using white-box – black-box technique

in teaching. Using the white box/black box technique we built up the modules,

and dependence of the circumstances the modules could be “unpacked”, or not.

But the appropriate mode of using modules always must be chosen very carefully.

The applied method depends on

– time (practical aspect: how many holidays are included in the semester)

– needs of professions in details:

• for civil engineering, the concept and the solution,

• for informatics students the construction of procedures

• for mathematicians the step by step solution

• for architects only the built in procedures-interest of students (it might

change to students group of the same year).

In our experience using Maple makes it possible to teach Fourier series and partial

differential equations deeper and more detailed. Using of white boxes in the whole

teaching process results

• the knowledge developed by the students is more flexible and can be connected

easier to practical application of other chapters;

• some of the students are able to modify the procedures, to create own proce-

dures for investigating of special cases;

• they gain considerable new skills in flexible using and writing procedures.

Students are working without white boxes can successful use procedures in their

work, they spare time for analyzing of occurrences, but of course transportability

of their knowing is not to compare with ability of previous group.

Our experiences suggest that moderate use of cas and the well-considered

modularization at university level benefits students in our courses.
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