
“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 35 — #1

7/1 (2009), 35–50

Teaching graph algorithms with

Visage

Andreas Fest and Ulrich Kortenkamp

Abstract. Combinatorial optimization is a substantial pool for teaching authentic math-
ematics. Studying topics in combinatorial optimization practice different mathematical
skills, and because of this have been integrated into the new Berlin curriculum for sec-
ondary schools. In addition, teachers are encouraged to use adequate teaching software.

The presented software package “Visage” is a visualization tool for graph algo-
rithms. Using the intuitive user interface of an interactive geometry system (Cinderella),
graphs and networks can be drawn very easily and different textbook algorithms can be
visualized on the graphs. An authoring tool for interactive worksheets and the usage of
the build-in programming interface offer new ways for teaching graphs and algorithms
in a classroom.

Key words and phrases: graph algorithms, discrete mathematics, mathematical pro-
gramming, minimum spanning tree, educational software, geometry software, combina-
torial optimization.

ZDM Subject Classification: D30, D40, D80, K30, N60, N80, U70.

1. Introduction

Discrete Mathematics is – finally – coming to schools. This modern and

interesting part of mathematics is integrated into more and more curricula world-

wide ([11], [23], [25], [24]). This article focuses on the new modules that were

included in the curriculum of the state of Berlin, Germany [2]. These are based

on topics from combinatorial optimization, and the curriculum states explicitely

Supported by the DFG Research Center Matheon.

Copyright c© 2009 by University of Debrecen



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 36 — #2

36 Andreas Fest and Ulrich Kortenkamp

that computer software should be used for teaching these – as it is customary at

universities or in research.

In this introduction we briefly explain why the authors support the intro-

duction of Discrete Mathematics in teaching mathematics at secondary (or even

primary) level. A more detailed discussion can be found in [9].

The new standards of education emphasize the advancement of general math-

ematical competencies: problem solving, modeling, the ability to communicate

and discuss mathematics, use of mathematical representations and handling of

symbolic and formal elements of mathematics. Freudenthal [8] remarks that it is

accepted by many that students have to be able to mathematize non-mathematical

content.

Because modern curricula are usually based on the competencies that stu-

dents should acquire, and not on the specific content to teach, we are free to

choose new topics for teaching in school.

There have been several (failed) attempts to include discrete mathematics,

and in particular graph theory, in school ([22], [27], [3]). The new approach

is much more problem-oriented and application-based. The topic is linked to

different knowledge domains from mathematics and other fields, either by the

applications or through the required problem solving and modeling competencies

(compare [10], [12], [1], [19], [20], [26], [4]).

For our work, we chose applications (mostly from graph theory, where stu-

dents are able to create a wealth of new examples by themselves) that offer a

particularly quick road to the mathematical problem without requiring much

prior knowledge [21], [14]. Therefor, the mathematical theory is developed by the

students themselves from questions they ask naturally, as required by the national

standards [18].

2. The educational software Visage

Visage is an educational software package for studying graphs and algorithms.

It has been developed at the DFG research center Matheon as an extension of

the interactive geometry software Cinderella [16].

Using software for learning about graphs and algorithms can be done in very

different ways. To support as many ways as possible, we offer three different

usage scenarios: Visage as an interactive graph laboratory, Visage as an authoring

tool for interactive worksheets or presentations, and Visage as a programming

interface for implementing graph algorithms. All levels are highly connected and



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 37 — #3

Teaching graph algorithms with Visage 37

can be used by students for their learning process as well as by the teacher for

preparing and supporting his lessons.

2.1. The Visage graph laboratory

Learning about graphs usually starts with exploring the basic attributes of

them. The best activity to examine those attributes is to play around with graphs,

i.e. construct some graphs and compare their characteristics. In particular, it is

useful to construct examples for difficult circumstances for a better understanding

of some properties. An environment for such an activity of students is called a

graph laboratory (see Lutz-Westphal [10]).

One problem when working with a graph lab using paper and pencil is that

humans tend to make mistakes and to overlook some hidden effects, just because

they think that the construction was meaningful. And so, some properties are

left undiscovered due to subconscious cheating.

It is much harder to make such mistakes when using a virtual graph labora-

tory, because the computer works in the background as an trustworthy referee.

It can detect the correctness of a students construction and gives immediate or

delayed feedback.

With Visage we created such a virtual laboratory. Visage provides a virtual

sheet of paper on which students can draw an arbitrary graph, i.e. they can

draw vertices and edges just like points and segments in a geometry software.

Depending on the aspects to research they can assign weights or directions on the

edges of the graph. At any time students can change the graph, add new vertices

and edges or delete previously drawn ones, or they can move the vertices of their

graph by dragging them with the mouse.

This setup enables students to explore certain basics aspects easily: They can

explore the structural aspects of graphs, as opposed to just arbitrary line drawings,

because they are forced to create vertices and edges, and they can experience that

these structural (or topological) aspects are invariant under certain changes of the

graph embedding, like moving vertices.

In a next step, students can assign built-in algorithms to their graphs. The

software features two classes of algorithms: One focusses on additional properties,

like showing the adjacency matrix or the degrees of the vertices. The other

contains classical text book algorithms for calculating shortest paths, minimum

spanning trees or Eulerian tours, and more. Figure 1 shows the visualization

of the algorithm of Dijkstra on a small graph in the Visage graph laboratory.

The chosen algorithms can be executed stepwise and come with pseudo code that



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 38 — #4

38 Andreas Fest and Ulrich Kortenkamp

Figure 1. The Visage Graph Laboratory Students can draw graphs and
assign algorithms to them.

can be followed during the execution. Here again it is possible to get a deeper

understanding and to explore what is happening. Students are able to answer

research questions such as “What happens to a shortest path tree when I delete

a certain edge?” or “How must a graph look like in order to be Eulerian?”

Each construction in the graph laboratory can be enhanced by using the

built-in programming interface which gives additional possibilities to study graph

properties, which we will describe below.

2.2. Authoring interactive material

Cinderella was one of the first interactive geometry software packages that

offered the possibility to export geometric constructions as a Java applet which

can be integrated into any HTML document [15]. This feature can also be used

in conjunction with Visage to export graphs and algorithms. Any teacher can

publish interactive worksheets for their class on the web or in a learning repository

such as Moodle.



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 39 — #5

Teaching graph algorithms with Visage 39

Such worksheets can be used to enrich a lesson by single interactive exer-

cises. Here again, the teacher can prepare a graph laboratory that is available to

the students, but now the available tools may be restricted for the students, as

chosen by the teacher. The advantage of this restriction is that the students are

guided and will not be confused by the endless possibilities of the full geometry

application.

Teachers can bundle a sequence of such activities as a complete learning unit

for a special topic. According to the new Berlin curriculum for Mathematics in

secondary schools [2], we exemplarily developed two interactive teaching units for

the topic “Optimal Paths”. Figure 2 shows screenshots from both units.

Figure 2. Interactive Teaching Units We developed two units to sup-
port the new Berlin curriculum.

The first unit called “Wie fährt die Müllabfuhr?” (“How to route a garbage

collector?”) is about the Eulerian tour problem. The second learning unit is called

“The Shortest Path Problem”. While the aim of the first unit is the discovery

of some basic properties of graphs, the second unit explains the working of two

algorithms for constructing a shortest path in a graph.

Both modules are based on the same didactical concepts. The main idea is to

present problems to the students they can answer using the software. The software

itself does not answer the given questions but offers an environment to explore

the underlying theory by the students. This helps them to find the answers on

their own. For example, each learning unit contains a dictionary that can be used

as a tool to discover unknown ideas and terms. The dictionary contains all theory



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 40 — #6

40 Andreas Fest and Ulrich Kortenkamp

specific terms that are used in the unit. But also there are some unused terms

acting as hidden hints. A detailed description of one of the units and its didactical

principals can be found in [14]. Some first experience in using the software are

reported in [9].

Using the authoring tool of our software package is an opportunity for the

students as well. For example, they can use this tool to present the results of their

work. In a project oriented learning environment students acquire knowledge in

a self-organized way. At the end of a sequence of lessons the students should

present their results in order to secure their progress and to train their skills in

communicating mathematics. Such a presentation might be done in various ways:

by creating a poster, writing a short report, giving a presentation or – using the

possibilities of the new media – by creating a web site on the school’s internet

server. If they decide to do the last one, they can enrich their presentation with

interactive graphics created with the Visage graph lab as a Java applet.

2.3. Visage and the CindyScript programming interface

We identified two main reasons why it is desirable to provide a programming

interface for interactive learning software for graphs and algorithms.

The first reason is the intrinsic motivation mentioned in Section 1. Study-

ing combinatorial optimization presupposes that students think about strategies

for finding a problem’s solution. Students should develop own ideas for such al-

gorithms and they are forced to understand and execute the standard textbook

algorithms. In most cases this will end up in a situation where the students might

want to implement algorithms on their own, either in order to verify their findings

or to better understand a textbook algorithm by modifying it and observing the

consequences of the changes.

Beside this, there is also a very technical aspect that requires the existence

of such a programming interface. The developers of the software cannot think of

all possible applications of the Visage software. Many teachers – and students as

well – are extremly creative in finding new ways to deal with graph-algorithmic

topics. They develop new ideas which attributes of graphs could be explored and

which hidden hints the computer should offer. The pool of build-in algorithms

of visage can only support a fraction of all possible applications. This requires

that users and authors of activities can extend the algorithms and visualizations

accordingly, which is only possible with a programming interface.

In both scenarios it is important to offer the possibility to program own al-

gorithms that can be applied to graphs in the Visage graph lab or that can be



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 41 — #7

Teaching graph algorithms with Visage 41

exported to interactive Java applets. In doing so, the focus should not lie on

the teaching and learning of a programming language, in particular if implemen-

tations are done by the students. In fact, the programming should be done in

a problem oriented way and only on demand. Then the students are able to

learn mathematical skills like modeling, abstraction, formalization and structur-

ing. Furthermore it should be possible to experience the result of an implemented

algorithm visually with a lot of custom examples without much effort.

The integrated programming language of Cinderella, CindyScript, fulfills

these needs. CindyScript is a functional programming language. Each state-

ment does return a value, just like a mathematical function. This result again

can be used as an input parameter for a further function. This also holds for

control structures like loops or conditional branches, which are implemented as

CindyScript functions. This matches the mathematical way of thinking better

than any imperative programming language.

Additionally, each of the geometric objects in a Cinderella construction is

mapped to a corresponding CindyScript object. This allows for direct access

and manipulation of all geometric objects. Using this technique, it is easy to

implement visualizations of the results of programmed algorithms, for example

by changing colors or moving elements.

The programming code can be assigned to the Cinderella draw-event, i.e.

each time the construction is redrawn, the program will be executed. When-

ever the graph in the Visage graph lab was changed, the algorithmic results are

immediately updated. New results of the algorithms are visualized in real-time

(or near-real-time, if the algorithm is more complex) whenever the vertices are

moved, vertices and edges are added or deleted or the weights of edges are varied.

As CindyScript does not support special attributes of graphs (weigths or

directions) in its core, we are developing an extension of CindyScript consisting

of functions for accessing the elements and properties of a graph. Basic graph

algorithms have been implemented already as well. The Visage graph library

is written in CindyScript itself. Users have full access to the functions and the

complete programming code. Students or teachers can re-use the implemented

algorithms as a programming tutorial or as templates for their own algorithms.

Also, students can use them as a basis to study the effects on the algorithms of

minor changes of the code.

In the next section we show how to use the programming language to let

students implement a minimum spanning tree algorithm.



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 42 — #8

42 Andreas Fest and Ulrich Kortenkamp

3. Programming graph algorithms within Visage

Using prepared learning units as interactive activities in a classroom offers

additional possibilities for individual and self-directed learning. In [9] it was

shown that students hold these options in high regard.

Nevertheless, in a survey conducted after the classroom tests the students

critizised one disadvantage of the presented units: students don’t have direct

access to the embedded algorithms. All algorithms used in the modules are im-

plemented using a black box principle, even if some of them are shown as pseudo

code or are executed step by step. The students neither have a possibility to

influence the behavior of the algorithms nor they can change them at all.

Questions like “What will happen if I change the order of nodes to be treated

in the algorithm” that can be starting points of inspiring and englightening discus-

sions cannot be answered in that framework. The learning environment cannot

accomodate structural changes in the algorithms or own inventions of the stu-

dents. We resolve this deficit of the pure visualization of algorithms using the

programming interface of Visage.

We provide a collection of additional functions for the built-in programming

language CindyScript. These functions allow for full access to all attributes of

a graph drawn in the graph lab. A set of standard graph algorithms is already

implemented. All available functions and algorithms are written in CindyScript

themselves and their source code can be examined and changed. This enables

students – and the teachers as well – to import and change the programming

code in the script editor of the Visage graph lab.

We want to present the programming interface in this article exemplarily with

an activity that was used in a teacher students’ course. A detailed description

of the interface is available on the website of the Visage project [7]. A complete

documentation of the CindyScript programming language is given in [17]. For a

short CindyScript tutorial see [6].

We want to stress the fact that our aim is not to teach students programming

as an end in itself. The students should learn how programming can be used as a

tool to answer questions and to solve problems. The question whether a program-

ming language is indeed need is a valid one. There are many problems that can be

solved by widely accepted programming environments like computer algebra sys-

tems (CAS) or spreadsheet applications like Excel. However, problems in graph

theory are geometric in nature and it is only natural to start computer-based

explorations in a geometry software. The necessary interactions and structuring



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 43 — #9

Teaching graph algorithms with Visage 43

can be stated informally, or in a formal language. The drawback of informal lan-

guages is that the correctness of answers and the necessary exactness can only be

checked by experts (teachers), not by the students themselves. By introducing a

formalized way of notation we enable students to self-assess their solutions with

the help of a computer.

3.1. Programming minimum spanning tree algorithms

A well known optimization problem on graphs is the minimum spanning tree

problem, cf. [5] and [13]. Given a graph with edge weights, you want to find a

spanning tree of minimum total weight, i.e. a cycle-free subgraph that connects

all vertices of the given graph and the sum of the weights of all chosen edges

should be as small as possible.

// Algorithm of Prim

vertices=allvertices(); // List of all vertices
numb=length(vertices); // Number of vertices
tree=[vertices_1]; // The first vertex is the starting tree vertex

edges=sort(alledges(),getweight(#)); // List of all edges sorted by weight

forall(edges,#.color=[1,0,0]); // coloring all edges red

forall(1..(numb-1),i, // We have to chose n-1 edges

newtreeedge=false; // no new tree edge found yet

// find cheapest edge leaving the tree

forall(edges,edge,

vw=incidentvertices(edge); // the two incident vertices of the edge

vwtree = common(tree,vw); // which vertices belong to the tree?

// Two tree vertices? Closed cycle, ignore edge!
// No tree vertex? Edge not connected to tree, ignore!

// One tree vertex? Found tree edge!
if(length(vwtree)==1,

if(newtreeedge==false, // Only use the cheapest (first) edge!
newtreeedge = true; // Found tree edge!

edge.color=[0,1,0]; // green!
tree = tree ++ (vw--vwtree); // Add vertex to tree

);

);
);

);

Figure 3. CindyScript implementation of the algorithm of Prim



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 44 — #10

44 Andreas Fest and Ulrich Kortenkamp

A typical1 application for this problem is the planing of optimal telecom-

munication networks. Consider a company that has several offices all over the

country. Now, this company connects all offices by a telecommunication network.

Therefor they must rent the desired cable from a telecommunication company.

For each line they hire, the company has to pay a certain amount. The goal is to

connect all offices and paying as less as possible. Other applications that fit to

an authentic mathematics instruction are presented in [10].

There are some very elementary solution algorithms known for the minimum

spanning tree problem. Some of them follow the principals of so-called greedy

algorithms. Those algorithms can easily be discovered by students on their own

in school.

Two well-known algorithm for minimum spanning trees are the algorithms of

Prim and Kruskal. We recommend these two for classroom investigations. Let us

shortly recall these algorithms below.

The algorithm of Prim starts with an arbitrary vertex, which now is marked as

“connected.” All other vertices are unconnected. Now, in each step the algorithm

chooses the cheapest edge (i.e. the edge with the least weight) connecting a

connected vertex with an unconnected one. The new vertex is then marked as

being connected. This is repeated until all vertices are connected. Figure 3 shows

the implementation of this algorithm using CindyScript. The result as it is shown

in the Visage graph lab for an example graph are displayed in Figure 4.

Note that the presented implementation of the algorithm does not have the

best known complexity as found in literature, cf. [5] and [13]. But for visualization

and didactical purposes it is more important to present a simple implementation

than a sophisticated coding using advanced data structures.

The second algorithm, the algorithm of Kruskal seems to be quite similar

at first sight. But now, there is no distinguished vertex to start with. In each

step the cheapest edge connecting two vertices that are unconnected until now is

chosen.

Whereas Prim always works on one tree that is continuously growing, Kruskal

constructs a bundle of smaller trees and merges two of them in each step.

For teaching the algorithmic solution of the minimum spanning tree problem

we propose to let the students develop the algorithms on their own. We expect

them to discover both of the mentioned algorithms or very similar ones. For

1Though typical, this problem is a little bit artificial. Usually, problems in combinatorial opti-

mization contain many subtleties, which makes them more difficult than expected. Still most

solutions are based on algorithms that are derived from the basic algorithms as presented here.



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 45 — #11

Teaching graph algorithms with Visage 45

Figure 4. A minimum spanning tree. The result of the Prim’s algo-
rithm (cf. Figure 3) is visualized in the Visage graph laboratory.

a further examination of the algorithms an implementation of the algorithms is

necessary. We suppose to present one of the algorithms to the students and let

them implement the other on their own. Since Kruskal is less restrictive in the

conditions for the next edge to be chosen we recommend to set the algorithm of

Prim in advance and let the students implement Kruskal in a comparable manner.

Further studies can be done by trying to implement both algorithms as similar

as possible.

3.2. Experiences with the programming approach

We completed the first tests of the presented concept in a course “Discrete

Mathematics and its Applications” for teacher students at the Technical Uni-

versity of Berlin held by B. Lutz-Westphal in the summerterm of 2007. This



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 46 — #12

46 Andreas Fest and Ulrich Kortenkamp

course consisted of a four-hour lecture on combinatorial optimization problems

and its school didactics. It was complemented by a two-hour exercise on typical

techniques of discrete mathematics and algorithmic analysis. Thirty students at-

tended the course. They had no or only little experience in programming. None

of them ever used CindyScript before.

The course was designed based on the requests of many students to learn how

to program for teaching. To fulfill this demand, the students had to work on two

optional programming exercises besides a series of theoretical exercises. The first

programming exercise was a short tutorial in programming CindyScript and was

meant to train them in implementing an interaction between the programming

interface and the graphical worksheet of Cinderella. The students had to imple-

ment an interactive visualization of a three term recursion. The results were very

promising and they were assigned a second exercise on the minimum spanning

tree problem.

The main programming exercise was to implement the algorithm of Kruskal.

In an introducing lecture we presented the programming code for the algorithm of

Prim shown in Figure 3 and explained all the necessary programming commands

from the Visage programming library. Additionally, the students could make use

of a pseudo code representation of the algorithm of Kruskal, so that they just had

to fill in the blanks with corresponding CindyScript commands.

The students did not have access to teaching assistens during their work with

the exercises. They could ask questions in during the regular office hours, though.

We could observe the typical beginners’ problems in programming. A par-

ticular problem poses the insufficient debugging features of the Cinderella script

editor. It was very difficult for the students to overcome syntactical errors they

made, but a face-to-face programming supervision would have avoided most of

the problems.

Nevertheless, 22 students completed the exercise. Most of the solutions were

absolutely satisfying and some of the students solutions did exceed our requests

by far. For example, some students used the graphical elements of Cinderella to

implement a sophisticated user interface for their visualization. Other students

implemented plausibility checks (unit tests) for their results, a thing that was not

requested but is very reasonable for programming complex algorithms.



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 47 — #13

Teaching graph algorithms with Visage 47

Figure 5. Students’ results. Two students’ solutions are shown. The
left picture shows a sophisticated user interface for an interactive visu-
alization of a three term recursion. The right picture is a visualization
of Kruskal’s algorithm for minimum spanning trees.

After completition of the exercise we asked the students whether they can

imagine a similar exercise for high school students. Due to their own problems

with the implementation only six of the participants believed that pupils are

capable of solving the task. Those six were solely those students who succeeded

themselves successfully, and among them mostly the women.

Here again, a more intensive personal support during the programming work

of the students could have decreased their fear for problems. In school it is

required that the teacher himself has enough experience in programming to make

him compentent enough to help his pupils. Hence, in our view learning how

to implement mathematical problems with the help of a computer must be an

integral component of teacher education.

Asked for their personal opinion, most of the participants of our course an-

swered that they hat much fun in solving the exercises or at least that it was an

interesting experience. Many of our students liked to learn more about program-

ming if they had any time besides their mathematical studies.

We want to conclude with a quotation from one of our students:

“Besides [all the problems we had – remark of the authors] it increased

my joy with programming and showed me how to do pretty nice things

using the computer with just a little effort.”



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 48 — #14

48 Andreas Fest and Ulrich Kortenkamp

Conclusions and future work

Using the combination of Visage and the built-in programming language

CindyScript opens a great pool of new possibilities for our software-based teach-

ing. On one hand, it is a flexible way to implement useful visualizations of al-

gorithms. Further learning units will be created using these tools. On the other

hand it has become easier to integrate programming of (graph) algorithms into

school education. Now, teachers and student have a substantial tool to program

the algorithms they developed as well as textbook algorithms. It must be deter-

mined wether the implementation of algorithms leads to a better mathematical

understanding, though.

In December 2007 a project week with the topic “Spannungen” at a coop-

eration school in Berlin will take place, and we will use the software there. The

german word “Spannung” means “friction” and “strain” as well as “tension”,

“pressure” or “voltage”. In the figurative sense the meaning of “spanning” also

fits to the subject of the project week. We will offer a student project on min-

imum spanning trees. The experience we expect to gather there with regard to

the programming framework will be used to bring forward similar exercises and

additional combinatorial optimization topics.

Acknowledgments

Most of the implementation of the Visage graph lab was done by Dirk Mater-

lik. A prototype of the interactive learning unit on “shortest paths” was written

by Anne Geschke. We would like to thank Brigitte Lutz-Westphal who gave some

helpful advise.

References

[1] M. Aigner, C. Bänsch, M. Grötschel, B. Lutz-Westphal, A. Unterreiter and G. M.
Ziegler, Lebendige mathematik! Berliner thesen zum mathematikunterricht, in: Mit-

teilungen der Deutschen Mathematiker-Vereinigung, Vol. 4, 2003, 29–31.

[2] Berliner Landesinstitut für Schule und Medien, Rahmenplan für die Sekundarstufe
I, Mathematik, Senatsverwaltung für Bildung, Jugend und Sport, Berlin, 2006.

[3] R. Bodendiek and H.-G. Bigalke, Graphen in Forschung und Unterricht, in:
Festschrift K. Wagner, Franzbecker, 1985.



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 49 — #15

Teaching graph algorithms with Visage 49

[4] R. Bruder and H.-G. Weigand, eds., Diskrete mathematik, Mathematik Lehren 129

(2005).

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algo-

rithms, Second edition, MIT Press, Cambridge, 2001.

[6] A. Fest, CindyScript – Ein kleiner Programmierkurs, Berlin, 2007,
http://www.math.tu-berlin.de/˜fest/cindyscript.

[7] A. Fest, U. Kortenkamp, A. Geschke and D. Materlik, Visage – A software pack-

age for the Visualization of Algorithms with Geometry Software, Berlin, 2007,
http://cinderella.de/visage/.

[8] H. Freudenthal, Mathematik als pädagigische Aufgabe, Klett, Stuttgart, 1973.

[9] A. Geschke, U. Kortenkamp, B. Lutz-Westphal and D. Materlik, Visage – visualiza-
tion of algorithms in discrete mathematics, Zentralblatt für Didaktik der Mathematik

37, no. 5 (2005), 395–401.

[10] S. Hußmann and B. Lutz-Westphal, eds., Kombinatorische Optimierung erleben,
Studium und Unterricht, Vieweg, Wiesbaden, 2007.

[11] M. J. Kenny and C. R. Hirsch, editors, Discrete Mathematics across the Curriculum,

K-12, Yearbook, National Council of Teachers of Mathematics, Virginia, USA, 1991.

[12] H. Kletzl, Daten- und Beziehungsstrukturen. Eine didaktische Analyse im Span-

nungsfeld von angewandter Informatik und angewandter Mathematik, Doctoral dis-
sertation, Universität Salzburg, 2002.

[13] B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algorithms, Sec-
ond edition, Springer, 2002.

[14] U. Kortenkamp, Guidelines for using computers creatively in mathematics educa-

tion, in: Proceedings of the first KAIST workshop on enhancing university mathe-

matics teaching, Daejon, Korea, 2005.

[15] U. Kortenkamp and J. Richter-Gebert, Geometry and education in the Internet age,
Thomas Ottmann and Ivan Tomek, editors, Ed-Media & Ed-Telecom 98. Proceed-

ings of the Tenth World Conference on Educational Multimedia and Hypermedia &

World Conference on Educational Telecommunications, Freiburg, Germany, June

20-25, 1998, Charlottesville, 1998, AACE.

[16] U. Kortenkamp and J. Richter-Gebert, The interactive Geometry Software Cin-

derella, Springer, Heidelberg, 1999, http://cinderella.de/.

[17] U. Kortenkamp and J. Richter-Gebert, Cinderella.2 Documentation, 2005,
http://doc.cinderella.de/.

[18] Kultusministerkonferenz, eds., Bildungsstandards im Fach Mathematik für den Mit-
tleren Schulabschluß, Luchterhand, Darmstadt, 2003.

[19] B. Lutz-Westphal, Erlebnis Mathematik – Kombinatorische Optimierung im Un-
terricht, in: Mitteilungen der Deutschen Mathematiker-Vereinigung, Vol. 2, 2004,
78–81.

[20] B. Lutz-Westphal, Lebendiger Mathematikunterricht mit kombinatorischer Opti-

mierung, in: Beiträge zum Mathematikunterricht, Franzbecker, Hildesheim, 2004,
353–356.



“Fest-Kortenkamp” — 2009/5/28 — 0:15 — page 50 — #16

50 A. Fest and U. Kortenkamp : Teaching graph algorithms with Visage

[21] B. Lutz-Westphal, Kombinatorische Optimierung – Inhalte und Methoden für einen

authentischen Mathematikunterricht, Dissertation, TU Berlin, 2006.

[22] O. Ore, Graphen und ihre Anwendungen, Klett, Stuttgart, 1974.

[23] H.-C. Reichel and T. Kubelik, Mathematik – verborgen und dennoch allgegenwärtig.

Außermathematische Anwendungen der Mathematik - eine neu konzipierte Lehrver-

anstaltung zur Mathematikdidaktik, in: Mathematik unsichtbar und doch allge-

genwärtig, Polygon Verlag, Buxheim, 2002.

[24] W. Renz, W. Euber, G. Kaiser, W. Löding and J. Weitendorf, Rahmenplan Math-

ematik, gymnasiale Oberstufe, Behörde für Bildung und Sport, Hamburg, 2004.

[25] A. Schrijver, Kleuren en routeren in grafen, Notes for high school teachers master-
class, http://www.cwi.nl/˜lex/.

[26] A. Schuster, Kombinatorische Optimierung als Gegenstand der Gymnasialdidak-

tik im Umfeld von Mathematik- und Informatikunterricht, Habilitationsschrift,
Würzburg, 2004.

[27] H. Wippermann, Graphen im Unterricht, 1976.

ANDREAS FEST

PÄDAGOGISCHE HOCHSCHULE SCHWÄBISCH GMÜND

OBERBETTRINGER STR. 200

D-73525 SCHWÄBISCH GMÜND

GERMANY

E-mail: andreas.fest@ph-gmuend.de

ULRICH KORTENKAMP

PÄDAGOGISCHE HOCHSCHULE KARLSRUHE

BISMARCKSTR. 10

D-76133 KARLSRUHE

GERMANY

E-mail: ulrich.kortenkamp@ph-karlsruhe.de

(Received October, 2007)


